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Answers to Odd-Numbered Exercises

CHAPTER 1

Section 1.1

1. a) Yes, T b) Yes, F c) Yes, T d) Yes, F e) No f) No
3. a) Mei does not have an MP3 player. b) There is pollution
in New Jersey. c) 2+ 1 �= 3. d) The summer in Maine is not
hot or it is not sunny. 5. a) Steve does not have more than
100 GB free disk space on his laptop b) Zach does not block
e-mails from Jennifer, or he does not block texts from Jennifer
c) 7 · 11 · 13 �= 999 d) Diane did not ride her bike 100 miles
on Sunday 7. a) F b) T c) T d) T e) T 9. a) Sharks have
not been spotted near the shore. b) Swimming at the New
Jersey shore is allowed, and sharks have been spotted near the
shore. c) Swimming at the New Jersey shore is not allowed,
or sharks have been spotted near the shore. d) If swimming
at the New Jersey shore is allowed, then sharks have not been
spotted near the shore. e) If sharks have not been spotted near
the shore, then swimming at the New Jersey shore is allowed.
f) If swimming at the New Jersey shore is not allowed, then
sharks have not been spotted near the shore. g) Swimming
at the New Jersey shore is allowed if and only if sharks have
not been spotted near the shore. h) Swimming at the New
Jersey shore is not allowed, and either swimming at the New
Jersey shore is allowed or sharks have not been spotted near
the shore. (Note that we were able to incorporate the paren-
theses by using the word “either” in the second half of the
sentence.) 11. a) p ∧ q b) p ∧ ¬q c) ¬p ∧ ¬q d) p∨ q

e) p→ q f) (p ∨ q) ∧ (p→¬q) g) q ↔ p 13. a) ¬p

b) p ∧¬q c) p → q d) ¬p →¬q e) p → q f) q ∧¬p

g) q → p 15. a) r∧¬p b) ¬p∧q∧r c) r → (q ↔¬p)

d) ¬ q∧¬p∧ r e) (q→(¬r ∧¬p))∧¬((¬r ∧¬p)→ q)

f) (p ∧ r) → ¬q 17. a) False b) True c) True d) True
19. a) Exclusive or: You get only one beverage. b) Inclusive
or: Long passwords can have any combination of symbols.
c) Inclusive or: A student with both courses is even more qual-
ified. d) Either interpretation possible; a traveler might wish
to pay with a mixture of the two currencies, or the store may
not allow that. 21. a) Inclusive or: It is allowable to take
discrete mathematics if you have had calculus or computer
science, or both. Exclusive or: It is allowable to take discrete
mathematics if you have had calculus or computer science,
but not if you have had both. Most likely the inclusive or is
intended. b) Inclusive or: You can take the rebate, or you can
get a low-interest loan, or you can get both the rebate and a
low-interest loan. Exclusive or: You can take the rebate, or
you can get a low-interest loan, but you cannot get both the
rebate and a low-interest loan. Most likely the exclusive or is
intended. c) Inclusive or: You can order two items from col-
umn A and none from column B, or three items from column
B and none from column A, or five items including two from
column A and three from column B. Exclusive or: You can

order two items from column A or three items from column
B, but not both. Almost certainly the exclusive or is intended.
d) Inclusive or: More than 2 feet of snow or windchill below
−100, or both, will close school. Exclusive or: More than 2
feet of snow or windchill below−100, but not both, will close
school. Certainly the inclusive or is intended. 23. a) If the
wind blows from the northeast, then it snows. b) If it stays
warm for a week, then the apple trees will bloom. c) If the Pis-
tons win the championship, then they beat the Lakers. d) If
you get to the top of Long’s Peak, then you must have walked
8 miles. e) If you are world-famous, then you will get tenure
as a professor. f) If you drive more than 400 miles, then you
will need to buy gasoline. g) If your guarantee is good, then
you must have bought your CD player less than 90 days ago.
h) If the water is not too cold, then Jan will go swimming.
25. a) You buy an ice cream cone if and only if it is hot out-
side. b) You win the contest if and only if you hold the only
winning ticket. c) You get promoted if and only if you have
connections. d) Your mind will decay if and only if you watch
television. e) The train runs late if and only if it is a day I
take the train. 27. a) Converse: “I will ski tomorrow only
if it snows today.” Contrapositive: “If I do not ski tomorrow,
then it will not have snowed today.” Inverse: “If it does not
snow today, then I will not ski tomorrow.” b) Converse: “If I
come to class, then there will be a quiz.” Contrapositive: “If I
do not come to class, then there will not be a quiz.” Inverse:
“If there is not going to be a quiz, then I don’t come to class.”
c) Converse: “A positive integer is a prime if it has no divisors
other than 1 and itself.” Contrapositive: “If a positive integer
has a divisor other than 1 and itself, then it is not prime.” In-
verse: “If a positive integer is not prime, then it has a divisor
other than 1 and itself.” 29. a) 2 b) 16 c) 64 d) 16

31. a) p ¬p p ∧ ¬p

T F F
F T F

b) p ¬p p ∨ ¬p

T F T
F T T

c) p q ¬q p ∨ ¬q (p ∨ ¬q) → q

T T F T T
T F T T F
F T F F T
F F T T F

d) p q p ∨ q p ∧ q (p ∨ q) → (p ∧ q)

T T T T T
T F T F F
F T T F F
F F F F T

S-1



P1: 1

ANS Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:29

S-2 Answers to Odd-Numbered Exercises

e) (p → q) ↔
p q p → q ¬q ¬p ¬q → ¬p (¬q → ¬p)

T T T F F T T
T F F T F F T
F T T F T T T
F F T T T T T

f) (p → q) →
p q p → q q → p (q → p)

T T T T T
T F F T T
F T T F F
F F T T T

33. For parts (a), (b), (c), (d), and (f) we have this table.

p q (p ∨ q) → (p ⊕ q) (p ⊕ q) → (p ∧ q) (p ∨ q) ⊕ (p ∧ q) (p ↔ q) ⊕ (¬p ↔ q) (p ⊕ q) → (p ⊕ ¬q)

T T F T F T T
T F T F T T F
F T T F T T F
F F T T F T T

For part (e) we have this table.

p q r ¬p ¬r p ↔ q ¬p ↔ ¬r (p ↔ q) ⊕ (¬p ↔ ¬r)

T T T F F T T F
T T F F T T F T
T F T F F F T T
T F F F T F F F
F T T T F F F F
F T F T T F T T
F F T T F T F T
F F F T T T T F

35. (p → q)∨ (p → q)∧ (p ↔ q)∨ (¬p ↔ ¬q) ↔
p q p → ¬q ¬p ↔ q (¬p → q) (¬p → q) (¬p ↔ q) (p ↔ q)

T T F F T T T T
T F T T T F T T
F T T T T T T T
F F T F T F T T

37. (p → q) ∨ (p → q) ∧ (p ↔ q) ∨ (¬p ↔ ¬q) ↔
p q r p → (¬q ∨ r) ¬p → (q → r) (¬p → r) (¬p → r) (¬q ↔ r) (q ↔ r)

T T T T T T T T T
T T F F T T T T F
T F T T T T F T T
T F F T T T F F F
F T T T T T T F F
F T F T F T F T T
F F T T T T T T F
F F F T T T F T T
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39. (p ↔ q) ↔
p q r s p ↔ q r ↔ s (r ↔ s)

T T T T T T T
T T T F T F F
T T F T T F F
T T F F T T T
T F T T F T F
T F T F F F T
T F F T F F T
T F F F F T F
F T T T F T F
F T T F F F T
F T F T F F T
F T F F F T F
F F T T T T T
F F T F T F F
F F F T T F F
F F F F T T T

41. The first clause is true if and only if at least one of p, q, and
r is true. The second clause is true if and only if at least one of
the three variables is false. Therefore the entire statement is
true if and only if there is at least one T and one F among the
truth values of the variables, in other words, that they don’t all
have the same truth value. 43. a) Bitwise OR is 111 1111;
bitwise AND is 000 0000; bitwise XOR is 111 1111. b) Bitwise
OR is 1111 1010; bitwise AND is 1010 0000; bitwise XOR is
0101 1010. c) Bitwise OR is 10 0111 1001; bitwise AND is
00 0100 0000; bitwise XOR is 10 0011 1001. d) Bitwise OR
is 11 1111 1111; bitwise AND is 00 0000 0000; bitwise XOR
is 11 1111 1111. 45. 0.2, 0.6 47. 0.8, 0.6 49. a) The
99th statement is true and the rest are false. b) Statements
1 through 50 are all true and statements 51 through 100 are
all false. c) This cannot happen; it is a paradox, showing that
these cannot be statements.

Section 1.2

1. e → a 3. g → (r ∧ (¬m) ∧ (¬b)) 5. e → (a ∧ (b ∨
p)∧ r) 7. a) q → p b) q ∧¬p c) q → p d) ¬q →¬p

9. Not consistent 11. Consistent 13. NEW AND JER-
SEY AND BEACHES, (JERSEY AND BEACHES) NOT
NEW 15. “If I were to ask you whether the right branch
leads to the ruins, would you answer yes?” 17 If the first
professor did not want coffee, then he would know that the an-
swer to the hostess’s question was “no.” Therefore the hostess
and the remaining professors know that the first professor did
want coffee. Similarly, the second professor must want coffee.
When the third professor said “no,” the hostess knows that the
third professor does not want coffee. 19. A is a knight and
B is a knave. 21. A is a knight and B is a knight. 23. A is
a knave and B is a knight. 25. A is the knight, B is the spy, C
is the knave. 27. A is the knight, B is the spy, C is the knave.
29. Any of the three can be the knight, any can be the spy, any
can be the knave. 31. No solutions 33. In order of de-
creasing salary: Fred, Maggie, Janice 35. The detective can

determine that the butler and cook are lying but cannot deter-
mine whether the gardener is telling the truth or whether the
handyman is telling the truth. 37. The Japanese man owns
the zebra, and the Norwegian drinks water. 39. One honest,
49 corrupt 41. a) ¬(p∧(q∨¬r))b) ((¬p)∧(¬q))∨(p∧r)

43. p

r

q

p

q

r

Section 1.3

1. The equivalences follow by showing that the appropriate
pairs of columns of this table agree.

p p ∧ T p ∨ F p ∧ F p ∨ T p ∨ p p ∧ p

T T T F T T T
F F F F T F F

3. a) p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

b) p q p ∧ q q ∧ p

T T T T
T F F F
F T F F
F F F F

5. (p ∧ q)∨
p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ r)

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

7. a) Jan is not rich, or Jan is not happy. b) Carlos will not
bicycle tomorrow, and Carlos will not run tomorrow. c) Mei
does not walk to class, and Mei does not take the bus to class.
d) Ibrahim is not smart, or Ibrahim is not hard working.

9. a) p q p ∧ q (p ∧ q) → p

T T T T
T F F T
F T F T
F F F T
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b) p q p ∨ q p → (p ∨ q)

T T T T
T F T T
F T T T
F F F T

c) p q ¬p p → q ¬p → (p → q)

T T F T T
T F F F T
F T T T T
F F T T T

d) p q p ∧ q p → q (p ∧ q) → (p → q)

T T T T T
T F F F T
F T F T T
F F F T T

e) p q p → q ¬(p → q) ¬(p → q) → p

T T T F T
T F F T T
F T T F T
F F T F T

f) p q p → q ¬(p → q) ¬q ¬(p → q) → ¬q

T T T F F T
T F F T T T
F T T F F T
F F T F T T

11. In each case we will show that if the hypothesis is true,
then the conclusion is also. a) If the hypothesis p ∧ q is true,
then by the definition of conjunction, the conclusion p must
also be true. b) If the hypothesis p is true, by the definition
of disjunction, the conclusion p ∨ q is also true. c) If the
hypothesis¬p is true, that is, if p is false, then the conclusion
p → q is true. d) If the hypothesis p ∧ q is true, then both
p and q are true, so the conclusion p → q is also true. e) If
the hypothesis ¬(p → q) is true, then p → q is false, so
the conclusion p is true (and q is false). f) If the hypothesis
¬(p → q) is true, then p → q is false, so p is true and q is
false. Hence, the conclusion ¬q is true. 13. That the fourth
column of the truth table shown is identical to the first column
proves part (a), and that the sixth column is identical to the
first column proves part (b).

p q p ∧ q p ∨ (p ∧ q) p ∨ q p ∧ (p ∨ q)

T T T T T T
T F F T T T
F T F F T F
F F F F F F

15. It is a tautology. 17. Each of these is true precisely when
p and q have opposite truth values. 19. The proposition

¬p ↔ q is true when ¬p and q have the same truth val-
ues, which means that p and q have different truth values.
Similarly, p ↔ ¬q is true in exactly the same cases. There-
fore, these two expressions are logically equivalent. 21. The
proposition ¬(p ↔ q) is true when p ↔ q is false, which
means that p and q have different truth values. Because this is
precisely when ¬p ↔ q is true, the two expressions are logi-
cally equivalent. 23. For (p→ r)∧(q → r) to be false, one
of the two conditional statements must be false, which hap-
pens exactly when r is false and at least one of p and q is true.
But these are precisely the cases in which p∨q is true and r is
false, which is precisely when (p ∨ q) → r is false. Because
the two propositions are false in exactly the same situations,
they are logically equivalent. 25. For (p → r) ∨ (q → r)

to be false, both of the two conditional statements must be
false, which happens exactly when r is false and both p and
q are true. But this is precisely the case in which p ∧ q is
true and r is false, which is precisely when (p ∧ q) → r

is false. Because the two propositions are false in exactly the
same situations, they are logically equivalent. 27. This fact
was observed in Section 1 when the biconditional was first
defined. Each of these is true precisely when p and q have the
same truth values. 29. The last column is all Ts.

(p → q) ∧
(p → q) ∧ (q → r) →

p q r p → q q → r (q → r) p → r (p → r)

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

31. These are not logically equivalent because when p, q, and
r are all false, (p → q) → r is false, but p → (q → r) is
true. 33. Many answers are possible. If we let r be true and
p, q, and s be false, then (p → q) → (r → s) will be false,
but (p → r) → (q → s) will be true. 35. a) p ∨ ¬q ∨ ¬r

b) (p∨ q ∨ r)∧ s c) (p∧T)∨(q∧F) 37. If we take duals
twice, every ∨ changes to an ∧ and then back to an ∨, every
∧ changes to an ∨ and then back to an ∧, every T changes to
an F and then back to a T, every F changes to a T and then
back to an F. Hence, (s∗)∗ = s. 39. Let p and q be equiv-
alent compound propositions involving only the operators ∧,
∨, and ¬, and T and F. Note that ¬p and ¬q are also equiv-
alent. Use De Morgan’s laws as many times as necessary to
push negations in as far as possible within these compound
propositions, changing ∨s to ∧s, and vice versa, and chang-
ing Ts to Fs, and vice versa. This shows that ¬p and ¬q are
the same as p∗ and q∗ except that each atomic proposition
pi within them is replaced by its negation. From this we can
conclude that p∗ and q∗ are equivalent because ¬p and ¬q
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are. 41. (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r)

43. Given a compound proposition p, form its truth table
and then write down a proposition q in disjunctive nor-
mal form that is logically equivalent to p. Because q in-
volves only ¬, ∧, and ∨, this shows that these three op-
erators form a functionally complete set. 45. By Exercise
43, given a compound proposition p, we can write down a
proposition q that is logically equivalent to p and involves
only ¬, ∧, and ∨. By De Morgan’s law we can eliminate all
the ∧’s by replacing each occurrence of p1 ∧ p2 ∧ · · · ∧ pn

with ¬(¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn). 47. ¬(p ∧ q) is true
when either p or q, or both, are false, and is false
when both p and q are true. Because this was the defi-
nition of p | q, the two compound propositions are logi-
cally equivalent. 49. ¬(p ∨ q) is true when both p and
q are false, and is false otherwise. Because this was
the definition of p ↓ q, the two are logically equivalent.
51. ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q) 53. This follows im-
mediately from the truth table or definition of p | q.
55. 16 57. If the database is open, then either the sys-
tem is in its initial state or the monitor is put in a closed
state. 59. All nine 61. a) Satisfiable b) Not satisfiable
c) Not satisfiable 63. Use the same propositions as were
given in the text for a 9 × 9 Sudoku puzzle, with the vari-
ables indexed from 1 to 4, instead of from 1 to 9, and
with a similar change for the propositions for the 2 × 2
blocks:

∧1
r=0

∧1
s=0

∧4
n=1

∨2
i=1

∨2
j=1 p(2r + i, 2s + j, n)

65.
∨9

i=1 p(i, j, n) asserts that column j contains the number
n, so

∧9
n=1

∨9
i=1 p(i, j, n) asserts that column j contains all

9 numbers; therefore
∧9

j=1
∧9

n=1
∨9

i=1 p(i, j, n) asserts that
every column contains every number.

Section 1.4

1. a) T b) T c) F 3. a) T b) F c) F d) F 5. a) There
is a student who spends more than 5 hours every weekday
in class. b) Every student spends more than 5 hours ev-
ery weekday in class. c) There is a student who does not
spend more than 5 hours every weekday in class. d) No
student spends more than 5 hours every weekday in class.
7. a) Every comedian is funny. b) Every person is a funny
comedian. c) There exists a person such that if she or he is
a comedian, then she or he is funny. d) Some comedians
are funny. 9. a) ∃x(P (x) ∧Q(x)) b) ∃x(P (x) ∧ ¬Q(x))

c) ∀x(P (x)∨Q(x)) d) ∀x¬(P (x)∨Q(x)) 11. a) T b) T
c) F d) F e) T f) F 13. a) T b) T c) T d) T 15. a) T
b) F c) T d) F 17. a) P(0) ∨ P(1) ∨ P(2) ∨ P(3) ∨ P(4)

b) P(0)∧P(1)∧P(2)∧P(3)∧P(4) c) ¬P(0)∨¬P(1)∨
¬P(2) ∨ ¬P(3) ∨ ¬P(4) d) ¬P(0) ∧ ¬P(1) ∧
¬P(2) ∧¬P(3) ∧ ¬P(4) e) ¬(P (0) ∨ P(1) ∨ P(2) ∨
P(3) ∨ P(4)) f) ¬(P (0) ∧ P(1) ∧ P(2) ∧ P(3) ∧ P(4))

19. a) P(1)∨P(2)∨P(3)∨P(4)∨P(5) b) P(1)∧P(2)∧
P(3)∧P(4)∧P(5) c) ¬(P (1)∨P(2)∨P(3)∨P(4)∨P(5))

d) ¬(P (1) ∧ P(2) ∧ P(3) ∧ P(4) ∧ P(5)) e) (P (1) ∧
P(2) ∧ P(4) ∧ P(5)) ∨ (¬P(1) ∨ ¬P(2) ∨ ¬P(3) ∨

¬P(4) ∨ ¬P(5)) 21. Many answers are possible. a) All
students in your discrete mathematics class; all students in
the world b) All United States senators; all college football
players c) George W. Bush and Jeb Bush; all politicians
in the United States d) Bill Clinton and George W. Bush;
all politicians in the United States 23. Let C(x) be the
propositional function “x is in your class.” a) ∃xH(x) and
∃x(C(x) ∧ H(x)), where H(x) is “x can speak Hindi”
b) ∀xF(x) and ∀x(C(x) → F(x)), where F(x) is “x is
friendly” c) ∃x¬B(x) and ∃x(C(x)∧¬B(x)), where B(x) is
“x was born in California” d) ∃xM(x) and ∃x(C(x)∧M(x)),
where M(x) is “x has been in a movie” e) ∀x¬L(x) and
∀x(C(x) → ¬L(x)), where L(x) is “x has taken a course
in logic programming” 25. Let P(x) be “x is perfect”;
let F(x) be “x is your friend”; and let the domain be all
people. a) ∀x ¬P(x) b) ¬∀x P (x) c) ∀x(F (x) → P(x))

d) ∃x(F (x) ∧ P(x)) e) ∀x(F (x) ∧ P(x)) or (∀x F(x)) ∧
(∀x P (x)) f) (¬∀x F(x)) ∨ (∃x ¬P(x)) 27. Let Y (x) be
the propositional function that x is in your school or class, as
appropriate. a) If we let V (x) be “x has lived in Vietnam,”
then we have ∃xV (x) if the domain is just your schoolmates,
or ∃x(Y (x) ∧ V (x)) if the domain is all people. If we let
D(x, y) mean that person x has lived in country y, then we
can rewrite this last one as ∃x(Y (x)∧D(x, Vietnam)). b) If
we let H(x) be “x can speak Hindi,” then we have ∃x¬H(x)

if the domain is just your schoolmates, or ∃x(Y (x)∧¬H(x))

if the domain is all people. If we let S(x, y) mean that per-
son x can speak language y, then we can rewrite this last
one as ∃x(Y (x) ∧ ¬S(x, Hindi)). c) If we let J (x), P(x),
and C(x) be the propositional functions asserting x’s knowl-
edge of Java, Prolog, and C++, respectively, then we have
∃x(J (x) ∧ P(x) ∧ C(x)) if the domain is just your school-
mates, or ∃x(Y (x) ∧ J (x) ∧ P(x) ∧ C(x)) if the domain
is all people. If we let K(x, y) mean that person x knows
programming language y, then we can rewrite this last one as
∃x(Y (x)∧K(x, Java)∧K(x, Prolog)∧K(x, C++)). d) If
we let T (x) be “x enjoys Thai food,” then we have ∀x T (x)

if the domain is just your classmates, or ∀x(Y (x) → T (x))

if the domain is all people. If we let E(x, y) mean that
person x enjoys food of type y, then we can rewrite this
last one as ∀x(Y (x) → E(x, Thai)). e) If we let H(x)

be “x plays hockey,” then we have ∃x ¬H(x) if the do-
main is just your classmates, or ∃x(Y (x) ∧ ¬H(x)) if
the domain is all people. If we let P(x, y) mean that per-
son x plays game y, then we can rewrite this last one as
∃x(Y (x) ∧ ¬P(x, hockey)). 29. Let T (x) mean that x is a
tautology and C(x) mean that x is a contradiction. a) ∃x T (x)

b) ∀x(C(x)→ T (¬x)) c) ∃x∃y(¬T (x)∧¬C(x)∧¬T (y)∧
¬C(y)∧T (x ∨ y)) d) ∀x∀y((T (x) ∧T (y)) → T (x∧y))

31. a) Q(0,0,0) ∧ Q(0,1,0) b) Q(0,1,1) ∨Q(1, 1, 1) ∨
Q(2, 1, 1) c) ¬Q(0, 0, 0)∨¬Q(0, 0, 1) d) ¬Q(0, 0, 1)∨
¬Q(1, 0, 1)∨¬Q(2,0,1) 33. a) Let T (x) be the predicate
that x can learn new tricks, and let the domain be old dogs.
Original is ∃x T (x). Negation is ∀x ¬T (x): “No old dogs can
learn new tricks.” b) Let C(x) be the predicate that x knows
calculus, and let the domain be rabbits. Original is¬∃x C(x).
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Negation is ∃x C(x): “There is a rabbit that knows calculus.”
c) Let F(x) be the predicate that x can fly, and let the domain
be birds. Original is∀x F(x). Negation is ∃x ¬F(x): “There is
a bird who cannot fly.” d) Let T (x) be the predicate that x can
talk, and let the domain be dogs. Original is¬∃x T (x). Nega-
tion is ∃x T (x): “There is a dog that talks.” e) Let F(x) and
R(x) be the predicates that x knows French and knows Rus-
sian, respectively, and let the domain be people in this class.
Original is¬∃x(F (x)∧R(x)). Negation is ∃x(F (x)∧R(x)):
“There is someone in this class who knows French and Rus-
sian.” 35. a) There is no counterexample. b) x= 0 c) x= 2
37. a) ∀x((F (x, 25,000) ∨ S(x, 25)) → E(x)), where E(x)

is “Person x qualifies as an elite flyer in a given year,” F(x, y)

is “Person x flies more than y miles in a given year,” and
S(x, y) is “Person x takes more than y flights in a given year”
b) ∀x(((M(x)∧T (x, 3))∨(¬M(x)∧ T (x, 3.5)))→Q(x)),
where Q(x) is “Person x qualifies for the marathon,”
M(x) is “Person x is a man,” and T (x, y) is “Person x

has run the marathon in less than y hours” c) M →
((H(60) ∨ (H(45) ∧ T )) ∧ ∀y G(B, y)), where M is the
proposition “The student received a masters degree,” H(x) is
“The student took at least x course hours,” T is the proposition
“The student wrote a thesis,” and G(x, y) is “The person got
grade x or higher in course y” d) ∃x ((T (x, 21)∧G(x, 4.0)),
where T (x, y) is “Person x took more than y credit hours”
and G(x, p) is “Person x earned grade point average p”
(we assume that we are talking about one given semester)
39. a) If there is a printer that is both out of service and
busy, then some job has been lost. b) If every printer is
busy, then there is a job in the queue. c) If there is a job
that is both queued and lost, then some printer is out of ser-
vice. d) If every printer is busy and every job is queued,
then some job is lost. 41. a) (∃x F(x, 10)) → ∃x S(x),
where F(x, y) is “Disk x has more than y kilobytes of
free space,” and S(x) is “Mail message x can be saved”
b) (∃x A(x)) → ∀x(Q(x) → T (x)), where A(x) is “Alert x

is active,” Q(x) is “Message x is queued,” and T (x) is “Mes-
sage x is transmitted” c) ∀x((x �= main console) → T (x)),
where T (x) is “The diagnostic monitor tracks the status of
system x” d) ∀x(¬L(x) → B(x)), where L(x) is “The host
of the conference call put participant x on a special list” and
B(x) is “Participant x was billed” 43. They are not equiva-
lent. Let P(x) be any propositional function that is sometimes
true and sometimes false, and let Q(x) be any propositional
function that is always false. Then ∀x(P (x)→ Q(x)) is false
but ∀xP (x) → ∀xQ(x) is true. 45. Both statements are
true precisely when at least one of P(x) and Q(x) is true for
at least one value of x in the domain. 47. a) If A is true,
then both sides are logically equivalent to ∀xP (x). If A is
false, the left-hand side is clearly false. Furthermore, for every
x, P(x) ∧ A is false, so the right-hand side is false. Hence,
the two sides are logically equivalent. b) If A is true, then
both sides are logically equivalent to ∃x P (x). If A is false,
the left-hand side is clearly false. Furthermore, for every x,
P(x) ∧ A is false, so ∃x(P (x) ∧ A) is false. Hence, the two
sides are logically equivalent. 49. We can establish these
equivalences by arguing that one side is true if and only if the

other side is true. a) Suppose that A is true. Then for each x,
P(x) → A is true; therefore the left-hand side is always true
in this case. By similar reasoning the right-hand side is always
true in this case. Therefore, the two propositions are logically
equivalent when A is true. On the other hand, suppose that A

is false. There are two subcases. If P(x) is false for every x,
then P(x) → A is vacuously true, so the left-hand side is
vacuously true. The same reasoning shows that the right-hand
side is also true, because in this subcase ∃xP (x) is false. For
the second subcase, suppose that P(x) is true for some x. Then
for that x, P(x)→ A is false, so the left-hand side is false. The
right-hand side is also false, because in this subcase ∃xP (x)

is true but A is false. Thus in all cases, the two propositions
have the same truth value. b) If A is true, then both sides
are trivially true, because the conditional statements have
true conclusions. If A is false, then there are two subcases. If
P(x) is false for some x, then P(x) → A is vacuously true
for that x, so the left-hand side is true. The same reasoning
shows that the right-hand side is true, because in this subcase
∀xP (x) is false. For the second subcase, suppose that P(x) is
true for every x. Then for every x, P(x) → A is false, so the
left-hand side is false (there is no x making the conditional
statement true). The right-hand side is also false, because it is
a conditional statement with a true hypothesis and a false con-
clusion. Thus in all cases, the two propositions have the same
truth value. 51. To show these are not logically equivalent,
let P(x) be the statement “x is positive,” and let Q(x) be
the statement “x is negative” with domain the set of integers.
Then ∃x P (x) ∧ ∃x Q(x) is true, but ∃x(P (x) ∧ Q(x)) is
false. 53. a) True b) False, unless the domain consists of
just one element c) True 55. a) Yes b) No c) juana, kiko
d) math273, cs301 e) juana, kiko 57. sibling(X,Y)
:- mother(M,X), mother(M,Y), father(F,X),
father(F,Y) 59. a) ∀x(P (x) → ¬Q(x))

b) ∀x(Q(x) → R(x)) c) ∀x(P (x) → ¬R(x)) d) The
conclusion does not follow. There may be vain profes-
sors, because the premises do not rule out the possibil-
ity that there are other vain people besides ignorant ones.
61. a) ∀x(P (x) → ¬Q(x)) b) ∀x(R(x) → ¬S(x))

c) ∀x(¬Q(x) →S(x)) d) ∀x(P (x) → ¬R(x)) e) The
conclusion follows. Suppose x is a baby. Then by the first
premise, x is illogical, so by the third premise, x is despised.
The second premise says that if x could manage a crocodile,
then x would not be despised. Therefore, x cannot manage a
crocodile.

Section 1.5

1. a) For every real number x there exists a real number y

such that x is less than y. b) For every real number x and real
number y, if x and y are both nonnegative, then their product
is nonnegative. c) For every real number x and real number
y, there exists a real number z such that xy = z. 3. a) There
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is some student in your class who has sent a message to
some student in your class. b) There is some student in your
class who has sent a message to every student in your class.
c) Every student in your class has sent a message to at least
one student in your class. d) There is a student in your class
who has been sent a message by every student in your class.
e) Every student in your class has been sent a message from
at least one student in your class. f) Every student in the class
has sent a message to every student in the class. 5. a) Sarah
Smith has visited www.att.com. b) At least one person has
visited www.imdb.org. c) Jose Orez has visited at least one
website. d) There is a website that both Ashok Puri and
Cindy Yoon have visited. e) There is a person besides David
Belcher who has visited all the websites that David Belcher
has visited. f) There are two different people who have visited
exactly the same websites. 7. a) Abdallah Hussein does not
like Japanese cuisine. b) Some student at your school likes
Korean cuisine, and everyone at your school likes Mexican
cuisine. c) There is some cuisine that either Monique Ar-
senault or Jay Johnson likes. d) For every pair of distinct
students at your school, there is some cuisine that at least one
them does not like. e) There are two students at your school
who like exactly the same set of cuisines. f) For every pair
of students at your school, there is some cuisine about which
they have the same opinion (either they both like it or they
both do not like it). 9. a) ∀xL(x, Jerry) b) ∀x∃yL(x, y)

c) ∃y∀xL(x, y) d) ∀x∃y¬L(x, y) e) ∃x¬L(Lydia, x)

f) ∃x∀y¬L(y, x) g) ∃x(∀yL(y, x) ∧ ∀z((∀wL(w, z)) →
z = x)) h) ∃x∃y(x �= y ∧ L(Lynn, x) ∧ L(Lynn, y) ∧
∀z(L(Lynn, z) → (z = x ∨ z= y))) i) ∀xL(x, x) j) ∃x ∀ y

(L(x,y) ↔ x = y) 11. a) A(Lois, Professor Michaels)
b) ∀x(S(x) → A(x, Professor Gross)) c) ∀x(F (x) → (A(x,
Professor Miller) ∨ A(Professor Miller, x))) d) ∃x(S(x) ∧
∀y(F (y) → ¬A(x, y))) e) ∃x(F (x) ∧ ∀y(S(y) →
¬A(y,x))) f) ∀y(F (y)→∃x(S(x)∨A(x,y))) g) ∃x(F (x)∧
∀y((F (y) ∧ (y �= x)) →A(x,y))) h) ∃x(S(x) ∧
∀y(F (y) → ¬A(y, x))) 13. a) ¬M (Chou, Koko)
b) ¬M(Arlene, Sarah)∧¬T (Arlene, Sarah) c) ¬M (Debo-
rah, Jose) d) ∀xM(x, Ken) e) ∀x¬T (x, Nina) f) ∀x(T -x,Avi)
∨M(x, Avi)) g) ∃x∀y(y �= x → M(x, y)) h) ∃x∀y(y �=
x → (M(x, y) ∨ T (x, y))) i) ∃x∃y(x �= y ∧ M(x, y) ∧
M(y, x)) j) ∃xM(x, x) k) ∃x∀y(x �= y → (¬M(x, y) ∧
¬T (y, x))) l) ∀x(∃y(x �= y ∧ (M(y, x) ∨ T (y, x))))

m) ∃x∃y(x �= y ∧ M(x, y) ∧ T (y, x)) n) ∃x∃y(x �= y ∧
∀z((z �= x ∧ z �= y) → (M (x, z) ∨ M (y, z) ∨ T (x, z) ∨
T (y, z)))) 15. a) ∀xP (x), where P(x) is “x needs a course
in discrete mathematics” and the domain consists of all com-
puter science students b) ∃xP (x), where P(x) is “x owns
a personal computer” and the domain consists of all students
in this class c) ∀x∃yP (x, y), where P(x, y) is “x has taken
y,” the domain for x consists of all students in this class,
and the domain for y consists of all computer science classes
d) ∃x∃yP (x, y), where P(x, y) and domains are the same as
in part (c) e) ∀x∀yP (x, y), where P(x, y) is “x has been
in y,” the domain for x consists of all students in this class,
and the domain for y consists of all buildings on campus
f) ∃x∃y∀z(P (z, y) → Q(x, z)), where P(z, y) is “z is in

y” and Q(x, z) is “x has been in z”; the domain for x con-
sists of all students in the class, the domain for y consists
of all buildings on campus, and the domain of z consists of
all rooms. g) ∀x∀y∃z(P (z, y) ∧ Q(x, z)), with same en-
vironment as in part (f) 17. a) ∀u∃m(A(u, m) ∧ ∀n(n �=
m → ¬A(u, n))), where A(u, m) means that user u has
access to mailbox m b) ∃p∀e(H(e) ∧ S(p, running))
→ S (kernel, working correctly), where H(e) means that
error condition e is in effect and S(x, y) means that the
status of x is y c) ∀u∀s(E(s, .edu) → A(u, s)), where
E(s, x) means that website s has extension x, and A(u, s)

means that user u can access website s d) ∃x∃y(x �=
y ∧ ∀z((∀s M(z,s)) ↔ (z = x ∨ z = y))),
where M(a, b) means that system a monitors remote server b

19. a) ∀x∀y((x < 0) ∧ (y < 0) → (x + y < 0)) b) ¬∀x∀y
((x > 0) ∧ (y > 0) → (x − y > 0)) c) ∀x∀y (x2 + y2 ≥
(x+ y)2) d) ∀x∀y (|xy| = |x||y|) 21. ∀x∃a∃b∃c∃d ((x >

0) → x = a2 + b2 + c2 + d2), where the domain consists
of all integers 23. a) ∀x ∀y ((x < 0) ∧ (y < 0) → (xy >

0)) b) ∀x(x − x = 0) c) ∀x∃a∃b(a �= b ∧ ∀c(c2 = x ↔
(c = a ∨ c = b))) d) ∀x((x < 0) → ¬∃y(x = y2))

25. a) There is a multiplicative identity for the real numbers.
b) The product of two negative real numbers is always a pos-
itive real number. c) There exist real numbers x and y such
that x2 exceeds y but x is less than y. d) The real numbers are
closed under the operation of addition. 27. a) True b) True
c) True d) True e) True f) False g) False h) True i) False
29. a) P(1,1) ∧ P(1,2) ∧ P(1,3) ∧ P(2,1) ∧ P(2,2) ∧
P(2, 3) ∧ P(3, 1) ∧ P(3, 2) ∧ P(3, 3) b) P(1, 1) ∨
P(1, 2)∨ P(1, 3)∨ P(2, 1)∨ P(2, 2)∨ P(2, 3)∨ P(3,1)∨
P(3, 2) ∨ P(3, 3) c) (P (1, 1) ∧ P(1, 2) ∧ P(1, 3)) ∨
(P (2 , 1)∧P(2, 2)∧P(2, 3))∨(P (3, 1)∧P(3, 2)∧P(3, 3))

d) (P (1, 1) ∨ P(2, 1) ∨ P(3, 1)) ∧ (P (1, 2) ∨ P(2, 2) ∨
P(3, 2))∧ (P (1, 3)∨P(2, 3)∨P(3, 3)) 31. a) ∃x∀y∃z¬T

(x, y, z) b) ∃x∀y¬P(x, y) ∧ ∃x∀y ¬ Q(x, y) c) ∃x∀y
(¬P(x, y)∨∀z¬R(x, y, z)) d) ∃x∀y(P (x, y)∧¬Q(x, y))

33. a) ∃x∃y¬P(x, y) b) ∃y∀x¬P(x, y) c) ∃y∃x(¬P(x,

y) ∧ ¬Q(x, y)) d) (∀x∀yP (x, y)) ∨ (∃x∃y¬Q(x, y))

e) ∃x(∀y∃z¬P(x,y,z) ∨ ∀z∃y¬P(x, y, z)) 35. Any do-
main with four or more members makes the statement true;
any domain with three or fewer members makes the state-
ment false. 37. a) There is someone in this class such
that for every two different math courses, these are not
the two and only two math courses this person has taken.
b) Every person has either visited Libya or has not visited
a country other than Libya. c) Someone has climbed ev-
ery mountain in the Himalayas. d) There is someone who
has neither been in a movie with Kevin Bacon nor has been
in a movie with someone who has been in a movie with
Kevin Bacon. 39. a) x = 2, y = −2 b) x = −4
c) x = 17, y = −1 41. ∀x ∀y ∀ z((x·y) ·z = x · (y · z))
43. ∀m∀b(m �= 0 → ∃x(mx + b = 0 ∧ ∀w(mw + b =
0 → w = x))) 45. a) True b) False c) True
47. ¬(∃x∀yP (x, y))↔∀x(¬∀yP (x, y)) ↔ ∀x∃y¬P(x,y)

49. a) Suppose that∀xP (x) ∧ ∃xQ(x) is true. Then P(x) is
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true for all x and there is an element y for which Q(y) is true.
Because P(x)∧Q(y) is true for all x and there is a y for which
Q(y) is true, ∀x∃y(P (x) ∧ Q(y)) is true. Conversely, sup-
pose that the second proposition is true. Let x be an element
in the domain. There is a y such that Q(y) is true, so ∃xQ(x)

is true. Because ∀xP (x) is also true, it follows that the first
proposition is true. b) Suppose that ∀xP (x) ∨ ∃xQ(x) is
true. Then either P(x) is true for all x, or there exists a y for
which Q(y) is true. In the former case, P(x) ∨ Q(y) is true
for all x, so ∀x∃y(P (x) ∨ Q(y)) is true. In the latter case,
Q(y) is true for a particular y, so P(x) ∨Q(y) is true for all
x and consequently ∀x∃y(P (x) ∨Q(y)) is true. Conversely,
suppose that the second proposition is true. If P(x) is true for
all x, then the first proposition is true. If not, P(x) is false for
some x, and for this x there must be a y such that P(x)∨Q(y)

is true. Hence, Q(y) must be true, so ∃yQ(y) is true. It fol-
lows that the first proposition must hold. 51. We will show
how an expression can be put into prenex normal form (PNF)
if subexpressions in it can be put into PNF. Then, working
from the inside out, any expression can be put in PNF. (To
formalize the argument, it is necessary to use the method of
structural induction that will be discussed in Section 5.3.) By
Exercise 45 of Section 1.4, we can assume that the proposition
uses only ∨ and ¬ as logical connectives. Now note that any
proposition with no quantifiers is already in PNF. (This is the
basis case of the argument.) Now suppose that the proposition
is of the form QxP(x), where Q is a quantifier. Because P(x)

is a shorter expression than the original proposition, we can
put it into PNF. Then Qx followed by this PNF is again in PNF
and is equivalent to the original proposition. Next, suppose
that the proposition is of the form¬P . If P is already in PNF,
we slide the negation sign past all the quantifiers using the
equivalences in Table 2 in Section 1.4. Finally, assume that
proposition is of the form P ∨Q, where each of P and Q is in
PNF. If only one of P and Q has quantifiers, then we can use
Exercise 46 in Section 1.4 to bring the quantifier in front of
both. If both P and Q have quantifiers, we can use Exercise
45 in Section 1.4, Exercise 48, or part (b) of Exercise 49 to
rewrite P ∨Q with two quantifiers preceding the disjunction
of a proposition of the form R ∨ S, and then put R ∨ S into
PNF.

Section 1.6

1. Modus ponens; valid; the conclusion is true, because
the hypotheses are true. 3. a) Addition b) Simplification
c) Modus ponens d) Modus tollens e) Hypothetical syllo-
gism 5. Let w be “Randy works hard,” let d be “Randy is a
dull boy,” and let j be “Randy will get the job.” The hypothe-
ses are w, w → d, and d →¬j . Using modus ponens and the
first two hypotheses, d follows. Using modus ponens and the
last hypothesis, ¬j , which is the desired conclusion, “Randy

will not get the job,” follows. 7. Universal instantiation is
used to conclude that “If Socrates is a man, then Socrates is
mortal.” Modus ponens is then used to conclude that Socrates
is mortal. 9. a) Valid conclusions are “I did not take Tues-
day off,” “I took Thursday off,” “It rained on Thursday.” b) “I
did not eat spicy foods and it did not thunder” is a valid con-
clusion. c) “I am clever” is a valid conclusion. d) “Ralph
is not a CS major” is a valid conclusion. e) “That you buy
lots of stuff is good for the U.S. and is good for you” is a
valid conclusion. f) “Mice gnaw their food” and “Rabbits
are not rodents” are valid conclusions. 11. Suppose that
p1, p2, . . . , pn are true. We want to establish that q → r

is true. If q is false, then we are done, vacuously. Otherwise,
q is true, so by the validity of the given argument form (that
whenever p1, p2, . . . , pn, q are true, then r must be true), we
know that r is true. 13. a) Let c(x) be “x is in this class,”
j (x) be “x knows how to write programs in JAVA,” and h(x)

be “x can get a high-paying job.” The premises are c(Doug),
j (Doug), ∀x(j (x) → h(x)). Using universal instantiation
and the last premise, j (Doug)→ h(Doug) follows. Applying
modus ponens to this conclusion and the second premise,
h(Doug) follows. Using conjunction and the first premise,
c(Doug) ∧ h(Doug) follows. Finally, using existential gener-
alization, the desired conclusion, ∃x(c(x) ∧ h(x)) follows.
b) Let c(x) be “x is in this class,” w(x) be “x enjoys whale
watching,” and p(x) be “x cares about ocean pollution.”
The premises are ∃x(c(x) ∧ w(x)) and ∀x(w(x) → p(x)).
From the first premise, c(y) ∧ w(y) for a particular per-
son y. Using simplification, w(y) follows. Using the sec-
ond premise and universal instantiation, w(y) → p(y)

follows. Using modus ponens, p(y) follows, and by con-
junction, c(y) ∧ p(y) follows. Finally, by existential gen-
eralization, the desired conclusion, ∃x(c(x) ∧ p(x)), fol-
lows. c) Let c(x) be “x is in this class,” p(x) be “x owns
a PC,” and w(x) be “x can use a word-processing pro-
gram.” The premises are c(Zeke), ∀x(c(x) → p(x)), and
∀x(p(x) → w(x)). Using the second premise and universal
instantiation, c(Zeke) → p(Zeke) follows. Using the first
premise and modus ponens, p(Zeke) follows. Using the third
premise and universal instantiation, p(Zeke) → w(Zeke)
follows. Finally, using modus ponens, w(Zeke), the desired
conclusion, follows. d) Let j (x) be “x is in New Jersey,”
f (x) be “x lives within 50 miles of the ocean,” and s(x) be
“x has seen the ocean.” The premises are ∀x(j (x) → f (x))

and ∃x(j (x) ∧ ¬s(x)). The second hypothesis and existen-
tial instantiation imply that j (y) ∧ ¬s(y) for a particular
person y. By simplification, j (y) for this person y. Using
universal instantiation and the first premise, j (y) → f (y),
and by modus ponens, f (y) follows. By simplification,¬s(y)

follows from j (y)∧¬s(y). So f (y)∧¬s(y) follows by con-
junction. Finally, the desired conclusion, ∃x(f (x) ∧ ¬s(x)),
follows by existential generalization. 15. a) Correct, using
universal instantiation and modus ponens b) Invalid; fallacy
of affirming the conclusion c) Invalid; fallacy of denying
the hypothesis d) Correct, using universal instantiation and
modus tollens 17. We know that some x exists that makes
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H(x) true, but we cannot conclude that Lola is one such x.
19. a) Fallacy of affirming the conclusion b) Fallacy of beg-
ging the question c) Valid argument using modus tollens
d) Fallacy of denying the hypothesis 21. By the second
premise, there is some lion that does not drink coffee. Let
Leo be such a creature. By simplification we know that Leo
is a lion. By modus ponens we know from the first premise
that Leo is fierce. Hence, Leo is fierce and does not drink
coffee. By the definition of the existential quantifier, there
exist fierce creatures that do not drink coffee, that is, some
fierce creatures do not drink coffee. 23. The error occurs in
step (5), because we cannot assume, as is being done here,
that the c that makes P true is the same as the c that makes Q

true. 25. We are given the premises ∀x(P (x)→Q(x)) and
¬Q(a). We want to show ¬P(a). Suppose, to the contrary,
that ¬P(a) is not true. Then P(a) is true. Therefore by uni-
versal modus ponens, we have Q(a). But this contradicts the
given premise ¬Q(a). Therefore our supposition must have
been wrong, and so ¬P(a) is true, as desired.

27. Step Reason
1. ∀x(P (x) ∧ R(x)) Premise
2. P(a) ∧ R(a) Universal instantiation from (1)
3. P(a) Simplification from (2)
4. ∀x(P (x) → Premise

(Q(x) ∧ S(x)))

5. Q(a) ∧ S(a) Universal modus ponens from (3)
and (4)

6. S(a) Simplification from (5)
7. R(a) Simplification from (2)
8. R(a) ∧ S(a) Conjunction from (7) and (6)
9. ∀x(R(x) ∧ S(x)) Universal generalization from (5)

29. Step Reason
1. ∃x¬P(x) Premise
2. ¬P(c) Existential instantiation from (1)
3. ∀x(P (x) ∨Q(x)) Premise
4. P(c) ∨Q(c) Universal instantiation from (3)
5. Q(c) Disjunctive syllogism from (4)

and (2)
6. ∀x(¬Q(x) ∨ S(x)) Premise
7. ¬Q(c) ∨ S(c) Universal instantiation from (6)
8. S(c) Disjunctive syllogism from (5)

and (7)
9. ∀x(R(x) → ¬S(x)) Premise
10. R(c) → ¬S(c) Universal instantiation from (9)
11. ¬R(c) Modus tollens from (8) and (10)
12. ∃x¬R(x) Existential generalization from

(11)

31. Let p be “It is raining”; let q be “Yvette has her umbrella”;
let r be “Yvette gets wet.” Assumptions are¬p∨q,¬q∨¬r ,
and p ∨ ¬r . Resolution on the first two gives ¬p ∨ ¬r . Res-
olution on this and the third assumption gives ¬r , as desired.
33. Assume that this proposition is satisfiable. Using resolu-
tion on the first two clauses enables us to conclude q ∨ q; in
other words, we know that q has to be true. Using resolution on
the last two clauses enables us to conclude ¬q ∨¬q; in other

words, we know that¬q has to be true. This is a contradiction.
So this proposition is not satisfiable. 35. Valid

Section 1.7

1. Let n = 2k + 1 and m = 2l + 1 be odd inte-
gers. Then n+m= 2(k+ l+ 1) is even. 3. Suppose that
n is even. Then n = 2k for some integer k. Therefore,
n2 = (2k)2 = 4k2 = 2(2k2). Because we have written n2

as 2 times an integer, we conclude that n2 is even. 5. Direct
proof: Suppose that m+n and n+p are even. Then m+n = 2s

for some integer s and n + p = 2t for some integer t . If we
add these, we get m+p+2n = 2s+2t . Subtracting 2n from
both sides and factoring, we have m + p = 2s + 2t − 2n =
2(s + t − n). Because we have written m + p as 2 times
an integer, we conclude that m + p is even. 7. Because n

is odd, we can write n = 2k + 1 for some integer k. Then
(k+1)2−k2 = k2+2k+1−k2 = 2k+1 = n. 9. Suppose
that r is rational and i is irrational and s = r + i is rational.
Then by Example 7, s+(−r) = i is rational, which is a contra-
diction. 11. Because

√
2 ·√2 = 2 is rational and

√
2 is irra-

tional, the product of two irrational numbers is not necessarily
irrational. 13. Proof by contraposition: If 1/x were rational,
then by definition 1/x = p/q for some integers p and q with
q �= 0. Because 1/x cannot be 0 (if it were, then we’d have
the contradiction 1 = x ·0 by multiplying both sides by x), we
know that p �= 0. Now x = 1/(1/x) = 1/(p/q) = q/p by the
usual rules of algebra and arithmetic. Hence, x can be written
as the quotient of two integers with the denominator nonzero.
Thus by definition, x is rational. 15. Assume that it is not
true that x ≥ 1 or y ≥ 1. Then x < 1 and y < 1. Adding these
two inequalities, we obtain x + y < 2, which is the negation
of x+y ≥ 2. 17. a) Assume that n is odd, so n = 2k+1 for
some integer k. Then n3+5 = 2(4k3+6k2+3k+3). Because
n3 + 5 is two times some integer, it is even. b) Suppose that
n3 + 5 is odd and n is odd. Because n is odd and the prod-
uct of two odd numbers is odd, it follows that n2 is odd and
then that n3 is odd. But then 5 = (n3 + 5) − n3 would have
to be even because it is the difference of two odd numbers.
Therefore, the supposition that n3 + 5 and n were both odd is
wrong. 19. The proposition is vacuously true because 0 is
not a positive integer. Vacuous proof. 21. P(1) is true be-
cause (a + b)1 = a + b ≥ a1 + b1 = a + b. Direct proof.
23. If we chose 9 or fewer days on each day of the week, this
would account for at most 9 · 7 = 63 days. But we chose 64
days. This contradiction shows that at least 10 of the days we
chose must be on the same day of the week. 25. Suppose by
way of contradiction that a/b is a rational root, where a and b

are integers and this fraction is in lowest terms (that is, a and
b have no common divisor greater than 1). Plug this proposed
root into the equation to obtain a3/b3 + a/b + 1 = 0. Mul-
tiply through by b3 to obtain a3 + ab2 + b3 = 0. If a and b

are both odd, then the left-hand side is the sum of three odd
numbers and therefore must be odd. If a is odd and b is even,
then the left-hand side is odd + even + even, which is again
odd. Similarly, if a is even and b is odd, then the left-hand
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side is even + even + odd, which is again odd. Because the
fraction a/b is in simplest terms, it cannot happen that both
a and b are even. Thus in all cases, the left-hand side is odd,
and therefore cannot equal 0. This contradiction shows that
no such root exists. 27. First, assume that n is odd, so that
n = 2k+1 for some integer k. Then 5n+6 = 5(2k+1)+6 =
10k + 11 = 2(5k + 5) + 1. Hence, 5n + 6 is odd. To prove
the converse, suppose that n is even, so that n = 2k for some
integer k. Then 5n+ 6 = 10k + 6 = 2(5k + 3), so 5n+ 6 is
even. Hence, n is odd if and only if 5n+ 6 is odd. 29. This
proposition is true. Suppose that m is neither 1 nor −1. Then
mn has a factor m larger than 1. On the other hand, mn = 1,
and 1 has no such factor. Hence, m = 1 or m = −1. In the
first case n = 1, and in the second case n = −1, because
n = 1/m. 31. We prove that all these are equivalent to x

being even. If x is even, then x = 2k for some integer k. There-
fore 3x+2 = 3 ·2k+2 = 6k+2 = 2(3k+1), which is even,
because it has been written in the form 2t , where t = 3k + 1.
Similarly, x + 5 = 2k + 5 = 2k + 4 + 1 = 2(k + 2) + 1,
so x + 5 is odd; and x2 = (2k)2 = 2(2k2), so x2

is even. For the converses, we will use a proof by contra-
position. So assume that x is not even; thus x is odd and
we can write x = 2k + 1 for some integer k. Then
3x+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1, which is odd
(i.e., not even), because it has been written in the form 2t + 1,
where t = 3k+ 2. Similarly, x + 5 = 2k+ 1+ 5 = 2(k+ 3),
so x + 5 is even (i.e., not odd). That x2 is odd was already
proved in Example 1. 33. We give proofs by contraposition
of (i ) → (ii), (ii) → (i ), (i ) → (iii ), and (iii ) → (i ).
For the first of these, suppose that 3x + 2 is rational, namely,
equal to p/q for some integers p and q with q �= 0. Then we
can write x = ((p/q) − 2)/3 = (p − 2q)/(3q), where
3q �= 0. This shows that x is rational. For the second condi-
tional statement, suppose that x is rational, namely, equal to
p/q for some integers p and q with q �= 0. Then we can write
3x+2 = (3p+2q)/q, where q �= 0. This shows that 3x+2 is
rational. For the third conditional statement, suppose that x/2
is rational, namely, equal to p/q for some integers p and q

with q �= 0. Then we can write x = 2p/q, where q �= 0. This
shows that x is rational. And for the fourth conditional state-
ment, suppose that x is rational, namely, equal to p/q for some
integers p and q with q �= 0. Then we can write x/2= p/(2q),
where 2q �= 0. This shows that x/2 is rational. 35. No
37. Suppose that p1 → p4 → p2 → p5 → p3 → p1. To
prove that one of these propositions implies any of the others,
just use hypothetical syllogism repeatedly. 39. We will give
a proof by contradiction. Suppose that a1, a2, . . . , an are all
less than A, where A is the average of these numbers. Then
a1 + a2 + · · · + an < nA. Dividing both sides by n shows
that A = (a1 + a2 + · · · + an)/n < A, which is a contradic-
tion. 41. We will show that the four statements are equiv-
alent by showing that (i ) implies (ii ), (ii ) implies (iii ), (iii )
implies (iv), and (iv) implies (i). First, assume that n is even.
Then n = 2k for some integer k. Then n + 1 = 2k + 1, so
n + 1 is odd. This shows that (i) implies (ii ). Next, suppose
that n + 1 is odd, so n + 1 = 2k + 1 for some integer k.
Then 3n + 1 = 2n + (n + 1) = 2(n + k) + 1, which

shows that 3n+1 is odd, showing that (ii ) implies (iii ). Next,
suppose that 3n + 1 is odd, so 3n + 1 = 2k + 1 for some
integer k. Then 3n = (2k + 1) − 1 = 2k, so 3n is even.
This shows that (iii ) implies (iv). Finally, suppose that n is
not even. Then n is odd, so n = 2k + 1 for some integer k.
Then 3n = 3(2k+1) = 6k+3 = 2(3k+1)+1, so 3n is odd.
This completes a proof by contraposition that (iv) implies (i).

Section 1.8

1. 12 + 1 = 2 ≥ 2 = 21; 22 + 1 = 5 ≥ 4 = 22; 32 + 1 =
10 ≥ 8 = 23; 42 + 1 = 17 ≥ 16 = 24 3. If x ≤ y,
then max(x, y) + min(x, y) = y + x = x + y. If x ≥ y,
then max(x, y) + min(x, y) = x + y. Because these are
the only two cases, the equality always holds. 5. Because
|x − y| = |y − x|, the values of x and y are interchange-
able. Therefore, without loss of generality, we can assume that
x ≥ y. Then (x + y − (x − y))/2 = (x + y − x + y)/2 =
2y/2 = y = min(x, y). Similarly, (x + y + (x − y))/2 =
(x + y + x − y)/2 = 2x/2 = x = max(x, y).
7. There are four cases. Case 1: x ≥ 0 and y ≥ 0. Then
|x| + |y| = x + y = |x + y|. Case 2: x < 0 and y < 0.
Then |x| + |y| = −x + (−y) = −(x + y) = |x + y| because
x+y < 0. Case 3: x ≥ 0 and y < 0. Then |x|+|y| = x+(−y).
If x ≥ −y, then |x+y| = x+y. But because y < 0,−y > y,
so |x| + |y| = x+ (−y) > x+ y = |x+ y|. If x < −y, then
|x+y| = −(x+y) = −x+(−y). But because x ≥ 0, x ≥ −x,
so |x|+|y| = x+ (−y)≥−x+ (−y)= |x+y|. Case 4: x < 0
and y ≥ 0. Identical to Case 3 with the roles of x and y re-
versed. 9. 10,001, 10,002, . . . , 10,100 are all nonsquares,
because 1002 = 10,000 and 1012 = 10,201; constructive.
11. 8 = 23 and 9 = 32 13. Let x = 2 and y = √

2. If
xy = 2

√
2 is irrational, we are done. If not, then letx = 2

√
2 and

y =√2/4. Then xy = (2
√

2)
√

2/4 = 2
√

2·(√2)/4 = 21/2 =√2.
15. a) This statement asserts the existence of x with a certain
property. If we let y = x, then we see that P(x) is true. If y

is anything other than x, then P(x) is not true. Thus, x is the
unique element that makes P true. b) The first clause here
says that there is an element that makes P true. The second
clause says that whenever two elements both make P true,
they are in fact the same element. Together these say that P

is satisfied by exactly one element. c) This statement asserts
the existence of an x that makes P true and has the further
property that whenever we find an element that makes P true,
that element is x. In other words, x is the unique element that
makes P true. 17. The equation |a − c| = |b− c| is equiv-
alent to the disjunction of two equations: a − c = b − c or
a − c = −b + c. The first of these is equivalent to a = b,
which contradicts the assumptions made in this problem, so
the original equation is equivalent to a − c = −b + c. By
adding b + c to both sides and dividing by 2, we see that this
equation is equivalent to c = (a + b)/2. Thus, there is a
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unique solution. Furthermore, this c is an integer, because the
sum of the odd integers a and b is even. 19. We are being
asked to solve n = (k − 2) + (k + 3) for k. Using the usual,
reversible, rules of algebra, we see that this equation is equiv-
alent to k = (n − 1)/2. In other words, this is the one and
only value of k that makes our equation true. Because n is odd,
n− 1 is even, so k is an integer. 21. If x is itself an integer,
then we can take n = x and ε = 0. No other solution is
possible in this case, because if the integer n is greater than x,
then n is at least x + 1, which would make ε ≥ 1. If x is not
an integer, then round it up to the next integer, and call that
integer n. Let ε = n − x. Clearly 0 ≤ ε < 1; this is the
only ε that will work with this n, and n cannot be any larger,
because ε is constrained to be less than 1. 23. The harmonic
mean of distinct positive real numbers x and y is always less
than their geometric mean. To prove 2xy/(x + y) <

√
xy,

multiply both sides by (x + y)/(2
√

xy) to obtain the equiv-
alent inequality

√
xy < (x + y)/2, which is proved in Ex-

ample 14. 25. The parity (oddness or evenness) of the sum
of the numbers written on the board never changes, because
j + k and |j − k| have the same parity (and at each step we
reduce the sum by j + k but increase it by |j − k|). There-
fore the integer at the end of the process must have the same
parity as 1 + 2 + · · · + (2n) = n(2n + 1), which is odd
because n is odd. 27. Without loss of generality we can as-
sume that n is nonnegative, because the fourth power of an
integer and the fourth power of its negative are the same. We
divide an arbitrary positive integer n by 10, obtaining a quo-
tient k and remainder l, whence n = 10k + l, and l is an
integer between 0 and 9, inclusive. Then we compute n4 in
each of these 10 cases. We get the following values, where X

is some integer that is a multiple of 10, whose exact value we
do not care about. (10k + 0)4 = 10,000k4 = 10,000k4 + 0,
(10k + 1)4 = 10,000k4 + X · k3 + X · k2 + X · k + 1,
(10k + 2)4 = 10,000k4 + X · k3 + X · k2 + X · k + 16,
(10k + 3)4 = 10,000k4 + X · k3 + X · k2 + X · k + 81,
(10k + 4)4 = 10,000k4 + X · k3 + X · k2 + X · k + 256,
(10k + 5)4 = 10,000k4 + X · k3 + X · k2 + X · k + 625,
(10k + 6)4 = 10,000k4 + X · k3 + X · k2 + X · k + 1296,
(10k + 7)4 = 10,000k4 + X · k3 + X · k2 + X · k + 2401,
(10k + 8)4 = 10,000k4 + X ·k3 + X · k2 + X · k + 4096,
(10k + 9)4 = 10,000k4 + X · k3 + X · k2 + X · k + 6561.
Because each coefficient indicated by X is a multiple of 10,
the corresponding term has no effect on the ones digit of the
answer. Therefore the ones digits are 0, 1, 6, 1, 6, 5, 6, 1, 6,
1, respectively, so it is always a 0, 1, 5, or 6. 29. Because
n3 > 100 for all n > 4, we need only note that n = 1,
n = 2, n = 3, and n = 4 do not satisfy n2 + n3 = 100.
31. Because 54 = 625, both x and y must be less than 5.
Then x4 + y4 ≤ 44 + 44 = 512 < 625. 33. If it is not
true that a ≤ 3

√
n, b ≤ 3

√
n, or c ≤ 3

√
n, then a > 3

√
n,

b > 3
√

n, and c > 3
√

n. Multiplying these inequalities of
positive numbers together we obtain abc < ( 3

√
n)3 = n,

which implies the negation of our hypothesis that n = abc.
35. By finding a common denominator, we can assume that
the given rational numbers are a/b and c/b, where b is a pos-

itive integer and a and c are integers with a < c. In particular,
(a+ 1)/b ≤ c/b. Thus, x = (a+ 1

2

√
2)/b is between the two

given rational numbers, because 0 <
√

2 < 2. Furthermore, x
is irrational, because if x were rational, then 2(bx− a) = √2
would be as well, in violation of Example 10 in Section 1.7.
37. a) Without loss of generality, we can assume that the x

sequence is already sorted into nondecreasing order, because
we can relabel the indices. There are only a finite number of
possible orderings for the y sequence, so if we can show that
we can increase the sum (or at least keep it the same) when-
ever we find yi and yj that are out of order (i.e., i < j but
yi > yj ) by switching them, then we will have shown that
the sum is largest when the y sequence is in nondecreasing
order. Indeed, if we perform the swap, then we have added
xiyj + xjyi to the sum and subtracted xiyi + xjyj . The
net effect is to have added xiyj + xjyi − xiyi − xjyj =
(xj − xi)(yi − yj ), which is nonnegative by our ordering as-
sumptions. b) Similar to part (a) 39. a) 6 → 3 → 10 →
5 → 16 → 8 → 4 → 2 → 1 b) 7 → 22 → 11 → 34 →
17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 →
8 → 4 → 2 → 1 c) 17 → 52 → 26 → 13 → 40 →
20 →10 → 5 → 16 → 8 → 4 → 2 → 1
d) 21 → 64 →32 → 16 → 8 → 4 → 2 → 1 41. Without
loss of generality, assume that the upper left and upper right
corners of the board are removed. Place three dominoes hor-
izontally to fill the remaining portion of the first row, and fill
each of the other seven rows with four horizontal dominoes.
43. Because there is an even number of squares in all, either
there is an even number of squares in each row or there is an
even number of squares in each column. In the former case,
tile the board in the obvious way by placing the dominoes hor-
izontally, and in the latter case, tile the board in the obvious
way by placing the dominoes vertically. 45. We can rotate
the board if necessary to make the removed squares be 1 and
16. Square 2 must be covered by a domino. If that domino is
placed to cover squares 2 and 6, then the following domino
placements are forced in succession: 5-9, 13-14, and 10-11,
at which point there is no way to cover square 15. Otherwise,
square 2 must be covered by a domino placed at 2-3. Then
the following domino placements are forced: 4-8, 11-12, 6-7,
5-9, and 10-14, and again there is no way to cover square 15.
47. Remove the two black squares adjacent to a white corner,
and remove two white squares other than that corner. Then no
domino can cover that white corner.

49. a)

(1) (2) (3) (4) (5)
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b) The picture shows tilings for the first four patterns.

1 3

2 4

To show that pattern 5 cannot tile the checkerboard, label the
squares from 1 to 64, one row at a time from the top, from left
to right in each row. Thus, square 1 is the upper left corner,
and square 64 is the lower right. Suppose we did have a tiling.
By symmetry and without loss of generality, we may suppose
that the tile is positioned in the upper left corner, covering
squares 1, 2, 10, and 11. This forces a tile to be adjacent to
it on the right, covering squares 3, 4, 12, and 13. Continue in
this manner and we are forced to have a tile covering squares
6, 7, 15, and 16. This makes it impossible to cover square 8.
Thus, no tiling is possible.

Supplementary Exercises

1. a) q → p b) q ∧ p c) ¬q ∨ ¬p d) q ↔ p 3. a) The
proposition cannot be false unless ¬p is false, so p is true. If
p is true and q is true, then ¬q ∧ (p → q) is false, so the
conditional statement is true. If p is true and q is false, then
p → q is false, so ¬q ∧ (p → q) is false and the conditional
statement is true. b) The proposition cannot be false unless
q is false. If q is false and p is true, then (p ∨ q) ∧ ¬p is
false, and the conditional statement is true. If q is false and p

is false, then (p ∨ q)∧¬p is false, and the conditional state-
ment is true. 5. ¬q → ¬p; p → q; ¬p → ¬q 7. (p ∧
q ∧ r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ s) ∨ (p ∧ ¬q ∧ r ∧ s)∨
(¬p ∧ q ∧ r ∧ s) 9. Translating these statements into
symbols, using the obvious letters, we have ¬t → ¬g,
¬g → ¬q, r → q, and ¬t ∧ r . Assume the state-
ments are consistent. The fourth statement tells us that ¬t

must be true. Therefore by modus ponens with the first state-
ment, we know that ¬g is true, hence (from the second state-
ment), that ¬q is true. Also, the fourth statement tells us
that r must be true, and so again modus ponens (third state-
ment) makes q true. This is a contradiction: q ∧ ¬q. Thus
the statements are inconsistent. 11. Reject-accept-reject-
accept, accept-accept-accept-accept, accept-accept-reject-
accept, reject-reject-reject-reject, reject-reject-accept-reject,
and reject-accept-accept-accept 13. Aaron is a knave and
Crystal is a knight; it cannot be determined what Bohan is.
15. Brenda 17. The premises cannot both be true, because

they are contradictory. Therefore it is (vacuously) true that
whenever all the premises are true, the conclusion is also
true, which by definition makes this a valid argument. Be-
cause the premises are not both true, we cannot conclude
that the conclusion is true. 19. Use the same propositions
as were given in Section 1.3 for a 9 × 9 Sudoku puzzle,
with the variables indexed from 1 to 16, instead of from 1
to 9, and with a similar change for the propositions for the
4 × 4 blocks:

∧3
r=0

∧3
s=0

∧16
n=1

∨4
i=1

∨4
j=1 p(4r + i, 4s +

j, n). 21. a) F b) T c) F d) T e) F f) T 23. Many an-
swers are possible. One example is United States senators.
25. ∀x∃y∃z (y �= z ∧ ∀w(P (w, x) ↔ (w = y ∨ w = z)))

27. a) ¬∃xP (x) b) ∃x(P (x) ∧ ∀y(P (y) → y = x))

c) ∃x1∃x2(P (x1) ∧ P(x2) ∧ x1 �= x2 ∧ ∀y (P (y) → (y =
x1∨y = x2))) d) ∃x1 ∃ x2 ∃ x3(P (x1)∧P(x2)∧P(x3)∧x1 �=
x2 ∧ x1 �= x3 ∧ x2 �= x3 ∧ ∀y(P (y) →
(y = x1 ∨ y = x2 ∨ y = x3))) 29. Suppose that
∃x(P (x) → Q(x)) is true. Then either Q(x0) is true for
some x0, in which case ∀xP (x) → ∃x Q(x) is true; or P(x0)

is false for some x0, in which case ∀xP (x) → ∃xQ(x) is
true. Conversely, suppose that ∃x(P (x) → Q(x)) is false.
That means that ∀x(P (x) ∧ ¬Q(x)) is true, which implies
∀xP (x) and ∀x(¬Q(x)). This latter proposition is equivalent
to ¬∃xQ(x). Thus, ∀xP (x) → ∃xQ(x) is false. 31. No
33. ∀x ∀z ∃y T (x, y, z), where T (x, y, z) is the statement
that student x has taken class y in department z, where
the domains are the set of students in the class, the set of
courses at this university, and the set of departments in the
school of mathematical sciences 35. ∃!x∃!y T (x, y) and
∃x∀z((∃y∀w(T (z, w) ↔ w = y)) ↔ z = x), where T (x, y)

means that student x has taken class y and the domain is all
students in this class 37. P(a)→ Q(a) and Q(a)→ R(a)

by universal instantiation; then ¬Q(a) by modus tollens and
¬P(a) by modus tollens 39. We give a proof by contraposi-
tion and show that if

√
x is rational, thenx is rational, assuming

throughout that x ≥ 0. Suppose that
√

x = p/q is rational,
q �= 0. Then x = (

√
x)2 = p2/q2 is also rational (q2 is again

nonzero). 41. We can give a constructive proof by letting
m = 10500+1. Then m2 = (10500+1)2 > (10500)2 = 101000.
43. 23 cannot be written as the sum of eight cubes. 45. 223
cannot be written as the sum of 36 fifth powers.

CHAPTER 2

Section 2.1

1. a) {−1,1} b) {1,2,3,4,5,6,7,8,9,10,11} c) {0,1,4, 9, 16,

25, 36, 49, 64, 81} d) ∅ 3. a) The first is a subset of the
second, but the second is not a subset of the first. b) Neither
is a subset of the other. c) The first is a subset of the sec-
ond, but the second is not a subset of the first. 5. a) Yes
b) No c) No 7. a) Yes b) No c) Yes d) No e) No f) No
9. a) False b) False c) False d) True e) False f) False g) True
11. a) True b) True c) False d) True e) True f) False



P1: 1

ANS Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:29

Answers to Odd-Numbered Exercises S-13

13.
January

May
June

July
August

November December

September October

March

February

April

15. The dots in certain regions indicate that those regions are
not empty.

C

U

B
A

17. Suppose that x ∈ A. Because A ⊆ B, this implies that
x ∈ B. Because B ⊆ C, we see that x ∈ C. Because
x ∈ A implies that x ∈ C, it follows that A⊆C. 19. a) 1
b) 1 c) 2 d) 3 21. a) {∅, {a}} b) {∅, {a}, {b}, {a, b}}
c) {∅, {∅}, {{∅}}, {∅, {∅}}} 23. a) 8 b) 16 c) 2 25. For
the “if” part, given A ⊆ B, we want to show that that
P(A) ⊆ P(B), i.e., if C ⊆ A then C ⊆ B. But this fol-
lows directly from Exercise 17. For the “only if” part, given
that P(A) ⊆ P(B), we want to show that A ⊆ B. Suppose
a ∈ A. Then {a} ⊆ A, so {a} ∈ P(A). Since P(A) ⊆ P(B),
it follows that {a} ∈ P(B), which means that {a} ⊆ B.
But this implies a ∈ B, as desired. 27. a) {(a, y), (b, y),
(c, y), (d, y), (a, z), (b, z), (c, z), (d, z)} b) {(y, a), (y, b),
(y, c), (y, d), (z, a), (z, b), (z, c), (z, d)} 29. The set of
triples (a, b, c), where a is an airline and b and c are cities.
A useful subset of this set is the set of triples (a, b, c) for
which a flies between b and c. 31. ∅ × A = {(x, y) | x ∈
∅ and y ∈ A} = ∅ = {(x, y) | x ∈ A and y ∈ ∅} = A × ∅
33. a) {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (1, 3), (3, 0), (3, 1),
(3, 3)} b) {(1, 1), (1, 2), (1, a), (1, b), (2, 1), (2, 2), (2, a),
(2, b), (a, 1), (a, 2), (a, a), (a, b), (b, 1), (b, 2), (b, a), (b, b)}
35. mn 37. mn 39. The elements of A × B × C consist
of 3-tuples (a, b, c), where a ∈ A, b ∈ B, and c ∈ C, whereas
the elements of (A × B) × C look like ((a, b), c)—ordered
pairs, the first coordinate of which is again an ordered pair.
41. a) The square of a real number is never−1. True b) There
exists an integer whose square is 2. False c) The square of
every integer is positive. False d) There is a real number equal
to its own square. True 43. a) {−1, 0, 1} b) Z−{0, 1} c) ∅
45. We must show that {{a}, {a, b}} = {{c}, {c, d}} if and
only if a = c and b = d. The “if” part is immediate. So
assume these two sets are equal. First, consider the case when
a �= b. Then {{a}, {a, b}} contains exactly two elements, one
of which contains one element. Thus, {{c}, {c, d}} must have
the same property, so c �= d and {c} is the element containing
exactly one element. Hence, {a} = {c}, which implies that
a = c. Also, the two-element sets {a, b} and {c, d} must be
equal. Because a = c and a �= b, it follows that b = d.

Second, suppose that a = b. Then {{a}, {a, b}} = {{a}}, a set
with one element. Hence, {{c}, {c, d}} has only one element,
which can happen only when c = d, and the set is {{c}}. It then
follows that a = c and b = d. 47. Let S = {a1, a2, . . . , an}.
Represent each subset of S with a bit string of length n, where
the ith bit is 1 if and only if ai ∈ S. To generate all subsets of
S, list all 2n bit strings of length n (for instance, in increasing
order), and write down the corresponding subsets.

Section 2.2

1. a) The set of students who live within one mile of school
and walk to classes b) The set of students who live within
one mile of school or walk to classes (or do both) c) The
set of students who live within one mile of school but
do not walk to classes d) The set of students who walk
to classes but live more than one mile away from school
3. a) {0,1,2,3,4,5,6} b) {3} c) {1, 2, 4,5} d) {0, 6} 5. A =
{x | ¬(x ∈ A)} = {x |¬(¬x ∈ A)} = {x | x ∈ A} = A

7. a) A ∪ U = {x | x ∈ A ∨ x ∈ U} = {x | x ∈ A ∨ T} =
{x | T} =U b) A ∩ ∅= {x | x ∈ A ∧ x ∈ ∅} = {x | x ∈
A ∧ F} = {x | F} = ∅ 9. a) A∪A={x | x ∈A∨x �∈A}=U

b) A ∩ A = {x | x ∈ A ∧ x �∈ A} = ∅ 11. a) A ∪
B = {x | x ∈ A ∨ x ∈ B} = {x | x ∈ B ∨ x ∈ A} = B ∪A

b) A ∩ B = {x | x ∈ A ∧ x ∈ B}= {x | x ∈ B ∧ x ∈ A} =
B ∩ A 13. Suppose x ∈ A ∩ (A ∪ B). Then x ∈ A and
x ∈ A ∪ B by the definition of intersection. Because x ∈ A,
we have proved that the left-hand side is a subset of the right-
hand side. Conversely, let x ∈ A. Then by the definition of
union, x ∈ A ∪ B as well. Therefore x ∈ A ∩ (A ∪ B)

by the definition of intersection, so the right-hand side is
a subset of the left-hand side. 15. a) x ∈ A ∪ B ≡
x �∈A ∪ B ≡ ¬(x ∈ A ∨ x ∈ B) ≡ ¬(x ∈ A) ∧ ¬(x ∈ B) ≡
x �∈ A ∧ x �∈ B ≡ x ∈ A ∧ x ∈ B ≡ x ∈ A ∩ B

b)
A B A ∪ B A ∪ B A B A ∩ B

1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

17. a) x ∈A ∩ B ∩ C ≡ x �∈A ∩ B ∩ C ≡ x �∈ A ∨ x �∈
B ∨ x �∈C ≡ x ∈A∨ x ∈B ∨ x ∈ C ≡ x ∈A ∪ B ∪ C

b)
A B C A ∩ B ∩ C A ∩ B ∩ C A B C A ∪ B ∪ C

1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1 1
1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 1 1 1
0 1 1 0 1 1 0 0 1
0 1 0 0 1 1 0 1 1
0 0 1 0 1 1 1 0 1
0 0 0 0 1 1 1 1 1
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19. a) Both sides equal {x | x ∈ A∧x �∈ B}. b) A = A∩U =
A∩ (B ∪B) = (A∩B)∪ (A∩B) 21. x ∈ A∪ (B ∪C) ≡
(x ∈ A) ∨ (x ∈ (B ∪ C)) ≡ (x ∈ A) ∨ (x ∈ B ∨ x ∈
C) ≡ (x ∈ A ∨ x ∈ B) ∨ (x ∈ C) ≡ x ∈ (A ∪ B) ∪ C

23. x ∈ A ∪ (B ∩ C) ≡ (x ∈ A) ∨ (x ∈ (B ∩ C)) ≡
(x ∈ A) ∨ (x ∈ B ∧ x ∈ C) ≡ (x ∈ A ∨ x ∈
B) ∧ (x ∈ A ∨ x ∈ C) ≡ x ∈ (A ∪ B) ∩ (A ∪ C)

25. a) {4,6} b) {0,1,2,3,4,5,6,7,8,9,10} c) {4, 5, 6, 8, 10}
d) {0,2,4, 5,6,7,8,9,10} 27. a) The double-shaded portion
is the desired set.

A B

C

b) The desired set is the entire shaded portion.

BA

C

c) The desired set is the entire shaded portion.

A B

C

29. a) B ⊆ A b) A ⊆ B c) A ∩ B = ∅ d) Nothing, because
this is always true e) A = B 31. A ⊆ B ≡ ∀x(x ∈ A →
x ∈ B) ≡ ∀x(x �∈ B → x �∈ A) ≡ ∀x(x ∈ B → x ∈
A) ≡ B ⊆ A 33. The set of students who are computer
science majors but not mathematics majors or who are math-
ematics majors but not computer science majors 35. An
element is in (A ∪ B) − (A ∩ B) if it is in the union of A

and B but not in the intersection of A and B, which means
that it is in either A or B but not in both A and B. This is
exactly what it means for an element to belong to A ⊕ B.
37. a) A ⊕ A = (A − A) ∪ (A − A) = ∅ ∪ ∅ = ∅
b) A⊕∅ = (A−∅)∪ (∅−A) = A∪∅ = A c) A⊕U =
(A− U) ∪ (U − A) = ∅ ∪ A = A d) A⊕ A = (A− A)∪
(A − A) = A ∪ A = U 39. B = ∅ 41. Yes 43. Yes
45. IfA∪B were finite, then it would haven elements for some
natural number n. But A already has more than n elements,
because it is infinite, and A∪B has all the elements that A has,
so A∪B has more than n elements. This contradiction shows
that A ∪B must be infinite. 47. a) {1, 2, 3, . . . , n} b) {1}
49. a) An b) {0, 1} 51. a) Z, {−1, 0, 1} b) Z − {0}, ∅
c) R, [−1, 1] d) [1,∞), ∅ 53. a) {1, 2, 3, 4, 7, 8, 9, 10}
b) {2, 4, 5, 6, 7} c) {1, 10} 55. The bit in the ith position of
the bit string of the difference of two sets is 1 if the ith bit
of the first string is 1 and the ith bit of the second string is 0,
and is 0 otherwise. 57. a) 11 1110 0000 0000 0000 0000
0000 ∨ 01 1100 1000 0000 0100 0101 0000 = 11 1110 1000
0000 0100 0101 0000, representing {a, b, c, d, e, g, p, t, v}

b) 11 1110 0000 0000 0000 0000 0000 ∧ 01 1100 1000 0000
0100 0101 0000 = 01 1100 0000 0000 0000 0000 0000,
representing {b, c, d} c) (11 1110 0000 0000 0000 0000
0000 ∨ 00 0110 0110 0001 1000 0110 0110) ∧ (01 1100
1000 0000 0100 0101 0000 ∨ 00 1010 0010 0000 1000 0010
0111) = 11 1110 0110 0001 1000 0110 0110 ∧ 01 1110
1010 0000 1100 0111 0111= 01 1110 0010 0000 1000 0110
0110, representing {b, c, d, e, i, o, t, u, x, y} d) 11 1110
0000 0000 0000 0000 0000 ∨ 01 1100 1000 0000 0100 0101
0000 ∨ 00 1010 0010 0000 1000 0010 0111 ∨ 00 0110 0110
0001 1000 0110 0110 = 11 1110 1110 0001 1100 0111
0111, representing {a,b,c,d,e,g,h,i,n,o,p,t,u,v,x,y,z}
59. a) {1, 2, 3, {1, 2, 3}} b) {∅} c) {∅, {∅}} d) {∅, {∅},
{∅, {∅}}} 61. a) {3 · a, 3 · b, 1 · c, 4 · d} b) {2 · a, 2 · b}
c) {1 · a, 1 · c} d) {1 · b, 4 · d} e) {5 · a, 5 · b, 1 · c, 4 · d}
63. F = {0.4 Alice, 0.1 Brian, 0.6 Fred, 0.9 Oscar, 0.5 Rita},
R = {0.6 Alice, 0.2 Brian, 0.8 Fred, 0.1 Oscar, 0.3 Rita}
65. {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar, 0.5 Rita}

Section 2.3

1. a) f (0) is not defined. b) f (x) is not defined for x < 0.
c) f (x) is not well-defined because there are two distinct
values assigned to each x. 3. a) Not a function b) A func-
tion c) Not a function 5. a) Domain the set of bit strings;
range the set of integers b) Domain the set of bit strings;
range the set of even nonnegative integers c) Domain the
set of bit strings; range the set of nonnegative integers not
exceeding 7 d) Domain the set of positive integers; range
the set of squares of positive integers = {1, 4, 9, 16, . . .}
7. a) Domain Z+×Z+; range Z+ b) Domain Z+; range
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} c) Domain the set of bit strings;
range N d) Domain the set of bit strings; range N 9. a) 1
b) 0 c) 0 d) −1 e) 3 f) −1 g) 2 h) 1 11. Only the
function in part (a) 13. Only the functions in parts (a) and
(d) 15. a) Onto b) Not onto c) Onto d) Not onto e) Onto
17. a) Depends on whether teachers share offices b) One-
to-one assuming only one teacher per bus c) Most likely not
one-to-one, especially if salary is set by a collective bargain-
ing agreement d) One-to-one 19. Answers will vary. a) Set
of offices at the school; probably not onto b) Set of buses
going on the trip; onto, assuming every bus gets a teacher
chaperone c) Set of real numbers; not onto d) Set of strings
of nine digits with hyphens after third and fifth digits; not
onto 21. a) The function f (x) with f (x) = 3x + 1 when
x ≥ 0 and f (x) = −3x + 2 when x < 0 b) f (x)= |x| + 1
c) The function f (x) with f (x) = 2x + 1 when x ≥ 0 and
f (x) = −2x when x < 0 d) f (x) = x2 + 1 23. a) Yes
b) No c) Yes d) No 25. Suppose that f is strictly decreas-
ing. This means that f (x) > f (y) whenever x < y. To
show that g is strictly increasing, suppose that x < y. Then
g(x) = 1/f (x) < 1/f (y) = g(y). Conversely, suppose that g
is strictly increasing. This means that g(x) < g(y) whenever
x < y. To show that f is strictly decreasing, suppose that
x < y. Then f (x) = 1/g(x) > 1/g(y) = f (y). 27. a) Let
f be a given strictly decreasing function from R to itself. If
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a < b, then f (a) > f (b); if a > b, then f (a) < f (b).
Thus if a �= b, then f (a) �= f (b). b) Answers will vary; for
example, f (x) = 0 for x < 0 and f (x) = −x for x ≥ 0.
29. The function is not one-to-one, so it is not invertible. On
the restricted domain, the function is the identity function on
the nonnegative real numbers, f (x) = x, so it is its own in-
verse. 31. a) f (S) = {0, 1, 3} b) f (S) = {0, 1, 3, 5, 8}
c) f (S) = {0, 8, 16, 40} d) f (S) = {1, 12, 33, 65}
33. a) Let x and y be distinct elements of A. Because g is one-
to-one, g(x) and g(y) are distinct elements of B. Because f is
one-to-one, f (g(x)) = (f ◦ g)(x) and f (g(y)) = (f ◦ g)(y)

are distinct elements of C. Hence, f ◦g is one-to-one. b) Let
y ∈ C. Because f is onto, y = f (b) for some b ∈ B.
Now because g is onto, b = g(x) for some x ∈ A. Hence,
y = f (b)= f (g(x))= (f ◦g)(x). It follows that f ◦g is onto.
35. No. For example, suppose that A = {a}, B = {b, c}, and
C = {d}. Let g(a) = b, f (b) = d, and f (c) = d . Then f and
f ◦ g are onto, but g is not. 37. (f + g)(x) = x2 + x + 3,
(fg)(x) = x3 + 2x2 + x + 2 39. f is one-to-one because
f (x1) = f (x2)→ ax1 + b= ax2+b→ ax1 = ax2 → x1 =
x2. f is onto because f ((y−b)/a) = y.f−1(y)= (y− b)/a.
41. a) A = B = R, S = { x | x > 0}, T = { x | x < 0},
f (x)= x2 b) It suffices to show that f (S)∩f (T )⊆ f (S∩T ).
Let y ∈ B be an element of f (S) ∩ f (T ). Then y ∈ f (S),
so y = f (x1) for some x1 ∈ S. Similarly, y = f (x2)

for some x2 ∈ T . Because f is one-to-one, it follows that
x1 = x2. Therefore x1 ∈ S ∩ T , so y ∈ f (S ∩ T ).
43. a) {x | 0 ≤ x < 1} b) {x | −1 ≤ x < 2} c) ∅
45. f−1(S) = {x ∈ A | f (x) �∈ S} = {x ∈ A | f (x) ∈ S}
= f−1(S) 47. Let x = �x� + ε, where ε is a real number
with 0 ≤ ε < 1. If ε < 1

2 , then �x� − 1 < x − 1
2 < �x�, so

�x − 1
2� = �x� and this is the integer closest to x. If ε > 1

2 ,
then �x� < x − 1

2 < �x� + 1, so �x − 1
2� = �x� + 1 and

this is the integer closest to x. If ε = 1
2 , then �x − 1

2� = �x�,
which is the smaller of the two integers that surround x and
are the same distance from x. 49. Write the real number x

as �x�+ ε, where ε is a real number with 0 ≤ ε < 1. Because
ε = x − �x�, it follows that 0 ≤ −�x� < 1. The first two
inequalities, x−1 < �x� and �x� ≤ x, follow directly. For the
other two inequalities, write x = �x�− ε′, where 0 ≤ ε′ < 1.
Then 0 ≤ �x� − x < 1, and the desired inequality follows.
51. a) If x < n, because �x� ≤ x, it follows that �x� < n.
Suppose that x ≥ n. By the definition of the floor function, it
follows that �x� ≥ n. This means that if �x� < n, then x < n.
b) If n < x, then because x ≤ �x�, it follows that n ≤ �x�.
Suppose that n ≥ x. By the definition of the ceiling function,
it follows that �x� ≤ n. This means that if n < �x�, then
n < x. 53. If n is even, then n = 2k for some integer k.
Thus, �n/2� = �k� = k = n/2. If n is odd, then n = 2k + 1
for some integer k. Thus, �n/2� = �k+ 1

2� = k = (n− 1)/2.
55. Assume that x ≥ 0. The left-hand side is �−x� and the
right-hand side is −�x�. If x is an integer, then both sides
equal −x. Otherwise, let x = n + ε, where n is a natu-
ral number and ε is a real number with 0 ≤ ε < 1. Then
�−x� = �−n − ε� = −n and −�x� = −�n + ε� = −n

also. When x < 0, the equation also holds because it can

be obtained by substituting −x for x. 57. �b� − �a� − 1
59. a) 1 b) 3 c) 126 d) 3600 61. a) 100 b) 256 c) 1030
d) 30,200

63.

–2

–1
0–1–2 2 431

1

3

2

4

65.

–2

–1

0–1–2

1

2 31

3

2

–3

67. a) 3

2

1

–2–4 2 4

–2

–3

–1

b) 3

2

1

–2

–3

–1–2 1 2
–1

c) 3

2

1

–2

–3

–1
–6–12 –3–9 6 123 9

d)
3

2

1

4

–2

–3

–1–1 1

e)
3

2

1

4

–2

–3

–4

–1
–2 –1 21

f)

3

2

1

4

5

–2 –1 1 2

–2

–3

–1

–4

g) See part (a). 69. f−1(y) = (y−1)1/3 71. a) fA∩B(x) =
1 ↔ x ∈ A ∩ B ↔ x ∈ A and x ∈ B ↔ fA(x) = 1 and
fB(x) = 1 ↔ fA(x)fB(x) = 1 b) fA∪B(x) = 1 ↔ x ∈
A ∪ B ↔ x ∈ A or x ∈ B ↔ fA(x) = 1
or fB(x) = 1 ↔ fA(x) + fB(x) − fA(x)fB(x) = 1
c) fA(x)= 1↔ x ∈A↔ x �∈A↔ fA(x)= 0↔ 1−fA(x) =
1 d) fA⊕B(x) = 1 ↔ x ∈ A⊕ B ↔ (x ∈ A and x �∈ B) or
(x �∈ A and x ∈ B) ↔ fA(x) + fB(x) − 2fA(x)fB(x) = 1
73. a) True; because �x� is already an integer, ��x�� = �x�.
b) False; x = 1

2 is a counterexample. c) True; if x or y is an
integer, then by property 4b in Table 1, the difference is 0. If
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neither x nor y is an integer, then x = n+ ε and y = m+ δ,
where n and m are integers and ε and δ are positive real num-
bers less than 1. Then m + n < x + y < m + n + 2, so
�x+y� is either m+n+1 or m+n+2. Therefore, the given
expression is either (n+ 1)+ (m+ 1)− (m+ n+ 1) = 1 or
(n+ 1)+ (m+ 1)− (m+ n+ 2) = 0, as desired. d) False;
x = 1

4 and y = 3 is a counterexample. e) False; x = 1
2 is

a counterexample. 75. a) If x is a positive integer, then the
two sides are equal. So suppose that x = n2 +m+ ε, where
n2 is the largest perfect square less than x, m is a nonnegative
integer, and 0 < ε ≤ 1. Then both

√
x and

√�x� = √n2 +m

are between n and n + 1, so both sides equal n. b) If x is a
positive integer, then the two sides are equal. So suppose that
x = n2 − m − ε, where n2 is the smallest perfect square
greater than x, m is a nonnegative integer, and ε is a real num-
ber with 0 < ε ≤ 1. Then both

√
x and

√�x� = √
n2 −m

are between n − 1 and n. Therefore, both sides of the equa-
tion equal n. 77. a) Domain is Z; codomain is R; domain of
definition is the set of nonzero integers; the set of values for
which f is undefined is {0}; not a total function. b) Domain
is Z; codomain is Z; domain of definition is Z; set of values
for which f is undefined is ∅; total function. c) Domain is
Z×Z; codomain is Q; domain of definition is Z× (Z−{0});
set of values for which f is undefined is Z × {0}; not a total
function. d) Domain is Z × Z; codomain is Z; domain of
definition is Z × Z; set of values for which f is undefined
is ∅; total function. e) Domain is Z × Z; codomain is Z;
domain of definitions is {(m, n) | m > n}; set of values
for which f is undefined is {(m, n) | m ≤ n}; not a total
function. 79. a) By definition, to say that S has cardinality
m is to say that S has exactly m distinct elements. Therefore
we can assign the first object to 1, the second to 2, and so on.
This provides the one-to-one correspondence. b) By part (a),
there is a bijection f from S to {1, 2, . . . , m} and a bijection
g from T to {1, 2, . . . , m}. Then the composition g−1 ◦ f is
the desired bijection from S to T .

Section 2.4

1. a) 3 b) −1 c) 787 d) 2639 3. a) a0 = 2, a1 = 3,

a2 = 5, a3 = 9 b) a0 = 1, a1 = 4, a2 = 27, a3 = 256
c) a0 = 0, a1 = 0, a2 = 1, a3 = 1 d) a0 = 0, a1 = 1,
a2 = 2, a3 = 3 5. a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29
b) 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9
d) −1, −2, −2, 8, 88, 656, 4912, 40064, 362368,
3627776 e) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536
f) 2, 4, 6, 10, 16, 26, 42, 68, 110, 178 g) 1, 2, 2, 3, 3, 3, 3, 4,

4, 4 h) 3, 3, 5, 4, 4, 3, 5, 5, 4, 3 7. Each term could be
twice the previous term; the nth term could be obtained from
the previous term by adding n − 1; the terms could be the
positive integers that are not multiples of 3; there are in-
finitely many other possibilities. 9. a) 2, 12, 72, 432, 2592
b) 2, 4, 16, 256, 65,536 c) 1, 2, 5, 11, 26 d) 1, 1, 6, 27, 204
e) 1, 2, 0, 1, 3 11. a) 6, 17, 49, 143, 421 b) 49 =
5 · 17 − 6 · 6, 143 = 5 · 49 − 6 · 17, 421 =
5 · 143 − 6 · 49 c) 5an−1 − 6an−2 =5(2n−1 + 5 ·

3n−1) − 6(2n−2 + 5 · 3n−2) = 2n−2(10 − 6) +
3n−2(75− 30) = 2n−2 · 4 + 3n−2 · 9 · 5 = 2n + 3n · 5 = an

13. a) Yes b) No c) No d) Yes e) Yes f) Yes g) No h) No
15. a) an−1 + 2an−2 + 2n − 9 = −(n − 1) + 2 + 2
[−(n − 2) + 2] + 2n − 9 = −n +2 = an b) an−1 +
2an−2+ 2n− 9 = 5(−1)n−1 − (n− 1)+ 2+ 2[5(−1)n−2−
(n− 2)+ 2] + 2n− 9= 5(−1)n − 2(−1+ 2)− n+ 2 = an

c) an−1+ 2an−2+ 2n−9= 3(−1)n−1+2n−1− (n−1)+ 2+
2[3(−1)n−2 + 2n−2 − (n− 2) + 2] + 2n− 9 = 3(−1)n−2

(−1 + 2) + 2n−2 (2 + 2) − n + 2 = an d) an−1 +
2an−2 + 2n− 9 = 7 · 2n−1 − (n− 1) + 2 + 2[7 · 2n−2−
(n − 2) + 2] + 2n− 9 = 2n−2(7 · 2+ 2 · 7)−n + 2 = an

17. a) an = 2 · 3n b) an = 2n+ 3 c) an = 1+ n(n+ 1)/2
d) an = n2 + 4n + 4 e) an = 1 f) an = (3n+1 − 1)/2
g) an = 5n! h) an = 2nn! 19. a) an= 3an−1 b) 5,904,900
21. a) an = n + an−1, a0 = 0 b) a12 = 78
c) an = n(n+ 1)/2 23. B(k) = [1+ (0.07/12)]B(k− 1)−
100, with B(0) = 5000 25. a) One 1 and one 0, followed
by two 1s and two 0s, followed by three 1s and three 0s,
and so on; 1, 1, 1 b) The positive integers are listed in in-
creasing order with each even positive integer listed twice;
9, 10, 10. c) The terms in odd-numbered locations are the
successive powers of 2; the terms in even-numbered loca-
tions are all 0; 32, 0, 64. d) an = 3 · 2n−1; 384, 768, 1536
e) an = 15 − 7(n − 1) = 22 − 7n; −34, −41, −48
f) an = (n2 + n + 4)/2; 57, 68, 80 g) an = 2n3;
1024, 1458, 2000 h) an = n! + 1; 362881, 3628801,
39916801 27. Among the integers 1, 2, . . . , an, where an

is the nth positive integer not a perfect square, the nonsquares
are a1,a2, . . . ,an and the squares are 12,22, . . . ,k2, where k

is the integer with k2 < n + k < (k + 1)2. Consequently,
an = n + k, where k2 < an < (k + 1)2. To find k, first note
that k2 < n+ k < (k + 1)2, so k2+1 ≤ n+k ≤ (k+1)2−1.
Hence, (k− 1

2 )2+ 3
4 = k2−k+1 ≤ n ≤ k2+k = (k+ 1

2 )2− 1
4 .

It follows that k − 1
2 <

√
n < k + 1

2 , so k = {√n}
and an = n + k = n + {√n}. 29. a) 20 b) 11 c) 30
d) 511 31. a) 1533 b) 510 c) 4923 d) 9842 33. a) 21
b) 78 c) 18 d) 18 35.

∑n
j=1(aj − aj−1) = an − a0

37. a) n2 b) n(n + 1)/2 39. 15150 41. n(n+1)(2n+1)
3 +

n(n+1)
2 + (n+ 1)(m − (n + 1)2 + 1), where n = �√m� − 1

43. a) 0 b) 1680 c) 1 d) 1024 45. 34

Section 2.5

1. a) Countably infinite, −1,−2,−3, −4, . . . b) Countably
infinite, 0, 2, −2, 4, −4, . . . c) Countably infinite,
99, 98, 97, . . . d) Uncountable e) Finite f) Countably infi-
nite, 0, 7,−7, 14,−14, . . . 3. a) Countable: match n with
the string of n 1s. b) Countable. To find a correspondence,
follow the path in Example 4, but omit fractions in the top
three rows (as well as continuing to omit fractions not in low-
est terms). c) Uncountable d) Uncountable 5. Suppose m

new guests arrive at the fully occupied hotel. Move the guest
in Room n to Room m + n for n = 1, 2, 3, . . .; then the new
guests can occupy rooms 1 to m. 7. For n = 1, 2, 3, . . ., put
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the guest currently in Room 2n into Room n, and the guest
currently in Room 2n − 1 into Room n of the new build-
ing. 9. Move the guess currently Room i to Room 2i + 1
for i = 1, 2, 3, . . .. Put the j th guest from the kth bus into
Room 2k(2j + 1). 11. a) A = [1, 2] (closed interval of
real numbers from 1 to 2), B = [3, 4] b) A = [1, 2] ∪ Z+,
B = [3, 4]∪Z+ c) A = [1, 3], B = [2, 4] 13. Suppose that
A is countable. Then either A has cardinality n for some non-
negative integer n, in which case there is a one-to-one function
from A to a subset of Z+ (the range is the first n positive in-
tegers), or there exists a one-to-one correspondence f from
A to Z+; in either case we have satisfied Definition 2. Con-
versely, suppose that |A| ≤ |Z+|. By definition, this means
that there is a one-to-one function from A to Z+, so A has the
same cardinality as a subset of Z+ (namely the range of that
function). By Exercise 16 we conclude that A is countable.
15. Assume that B is countable. Then the elements of B can
be listed as b1, b2, b3, . . . . Because A is a subset of B, taking
the subsequence of {bn} that contains the terms that are in A

gives a listing of the elements of A. Because A is uncount-
able, this is impossible. 17. Assume that A−B is countable.
Then, because A = (A − B) ∪ (A ∩ B), the elements of A

can be listed in a sequence by alternating elements of A− B

and elements of A∩B. This contradicts the uncountability of
A. 19. We are given bijections f from A to B and g from
C to D. Then the function from A × C to B × D that sends
(a, c) to (f (a), g(c)) is a bijection. 21. By the definition
of |A| ≤ |B|, there is a one-to-one function f : A→ B. Simi-
larly, there is a one-to-one function g : B → C. By Exercise 33
in Section 2.3, the composition g ◦ f : A→ C is one-to-one.
Therefore by definition |A| ≤ |C|. 23. Using the Axiom of
Choice from set theory, choose distinct elements a1, a2, a3,
…of A one at a time (this is possible because A is infinite). The
resulting set {a1, a2, a3, . . .} is the desired infinite subset of A.
25. The set of finite strings of characters over a finite alphabet
is countably infinite, because we can list these strings in al-
phabetical order by length. Therefore the infinite set S can be
identified with an infinite subset of this countable set, which
by Exercise 16 is also countably infinite. 27. Suppose that
A1, A2, A3, . . . are countable sets. Because Ai is countable,
we can list its elements in a sequence as ai1, ai2, ai3, . . . . The
elements of the set

⋃n
i=1 Ai can be listed by listing all terms

aij with i + j = 2, then all terms aij with i + j = 3, then
all terms aij with i + j = 4, and so on. 29. There are a
finite number of bit strings of length m, namely, 2m. The set
of all bit, strings is the union of the sets of bit strings of length
m for m = 0, 1, 2, . . . . Because the union of a countable
number of countable sets is countable (see Exercise 27), there
are a countable number of bit strings. 31. It is clear from
the formula that the range of values the function takes on for a
fixed value of m+ n, say m+ n = x, is (x − 2)(x − 1)/2+ 1
through (x − 2)(x − 1)/2+ (x − 1), because m can assume
the values 1, 2, 3, . . . , (x − 1) under these conditions, and
the first term in the formula is a fixed positive integer when
m + n is fixed. To show that this function is one-to-one and
onto, we merely need to show that the range of values for

x + 1 picks up precisely where the range of values for x

left off, i.e., that f (x − 1, 1) + 1 = f (1, x). We have
f (x−1, 1)+1 = (x−2)(x− 1)

2 + (x−1)+1 = x2 − x+ 2
2 =

(x− 1)x
2 +1 = f (1, x). 33. By the Schröder-Bernstein theo-

rem, it suffices to find one-to-one functions f : (0, 1)→ [0, 1]
and g : [0, 1] → (0, 1). Let f (x) = x and g(x) = (x + 1)/3.
35. Each element A of the power set of the set of positive
integers (i.e., A ⊆ Z+) can be represented uniquely by the
bit string a1a2a3 . . ., where ai = 1 if i ∈ A and ai = 0
if i /∈ A. Assume there were a one-to-one correspondence
f : Z+ → P(Z+). Form a new bit string s = s1s2s3 . . . by set-
ting si to be 1 minus the ith bit of f (i). Then because s differs
in the i bit from f (i), s is not in the range of f , a contradiction.
37. For any finite alphabet there are a finite number of strings
of length n, whenever n is a positive integer. It follows by the
result of Exercise 27 that there are only a countable number
of strings from any given finite alphabet. Because the set of
all computer programs in a particular language is a subset of
the set of all strings of a finite alphabet, which is a countable
set by the result from Exercise 16, it is itself a countable set.
39. Exercise 37 shows that there are only a countable number
of computer programs. Consequently, there are only a count-
able number of computable functions. Because, as Exercise
38 shows, there are an uncountable number of functions, not
all functions are computable.

Section 2.6

1. a) 3× 4 b)

⎡
⎣

1
4
3

⎤
⎦ c)

[
2 0 4 6

]
d) 1

e)
⎡
⎢⎢⎣

1 2 1
1 0 1
1 4 3
3 6 7

⎤
⎥⎥⎦

3. a)
[

1 11
2 18

]
b)
⎡
⎣

2 −2 −3
1 0 2
9 −4 4

⎤
⎦

c)
⎡
⎢⎢⎣

−4 15 −4 1
−3 10 2 −3
0 2 −8 6
1 −8 18 −13

⎤
⎥⎥⎦

5. [ 9/5 −6/5
−1/5 4/5

]

7. 0+A= [0+ aij

]= [aij + 0
]= 0+A 9. A+(B+C)=[

aij + (bij + cij )
] = [

(aij + bij ) + cij

] = (A+B) + C
11. The number of rows of A equals the number of
columns of B, and the number of columns of A
equals the number of rows of B. 13. A(BC) =[∑

qaiq

(∑
rbqrcrl

)] =
[∑

q

∑
raiqbqrcrl

]
=[∑

r

∑
qaiqbqrcrl

]
=

[∑
r

(∑
qaiqbqr

)
crl

]
= (AB)C

15. An =
[

1 n
0 1

]
17. a) Let A = [aij ] and

B = [bij ]. Then A + B = [aij + bij ]. We have
(A + B)t = [aji + bji] = [aji] + [bji] = At + Bt .
b) Using the same notation as in part (a), we have BtAt =
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[∑
q bqiajq

]
=

[∑
q ajqbqi

]
= (AB)t , because the

(i, j )th entry is the (j, i)th entry of AB. 19. The result fol-

lows because

[
a b

c d

] [
d −b

−c a

]
=
[
ad−bc 0

0 ad−bc

]
=

(ad − bc)I2 =
[

d −b

−c a

] [
a b

c d

]
. 21. An(A−1)n =

A(A · · ·(A(AA−1)A−1) · · ·A−1)A−1 by the associative law.
Because AA−1 = I, working from the inside shows that
An(A−1)n = I. Similarly (A−1)nAn = I. Therefore
(An)−1 = (A−1)n. 23. The (i, j)th entry of A + At

is aij + aji , which equals aji + aij , the (j, i)th entry of
A+ At , so by definition A+ At is symmetric. 25. x1 = 1,
x2 = −1, x3 = −2

27. a)
⎡
⎣

1 1 1
1 1 1
1 0 1

⎤
⎦

b)
⎡
⎣

0 0 1
1 0 0
0 0 1

⎤
⎦

c)
⎡
⎣

1 1 1
1 1 1
1 0 1

⎤
⎦

29. a) ⎡
⎣

1 0 0
1 1 0
1 0 1

⎤
⎦

b) ⎡
⎣

1 0 0
1 0 1
1 1 0

⎤
⎦

c) ⎡
⎣

1 0 0
1 1 1
1 1 1

⎤
⎦

31. a) A∨B= [aij ∨ bij ] = [bij ∨aij ]=B∨A b) A ∧ B =
[aij ∧ bij ] = [bij ∧ aij ] = B ∧ A 33. a) A ∨ (B ∧ C) =
[aij ] ∨ [bij ∧ cij ] = [aij ∨ (bij ∧ cij )] = [(aij ∨ bij ) ∧
(aij ∨ cij )] = [aij ∨ bij ] ∧ [aij ∨ cij ] = (A∨B)∧ (A∨C)

b) A ∧ (B ∨ C) = [aij ] ∧ [bij ∨ cij ] = [aij ∧ (bij ∨ cij )] =
[(aij ∧ bij ) ∨ (aij ∧ cij )] = [aij ∧ bij ] ∨ [aij ∧
cij ] = (A ∧ B) ∨ (A ∧ C) 35. A � (B � C) =[∨

qaiq ∧
(∨

r

(
bqr ∧ crl

))] =
[∨

q

∨
r

(
aiq ∧ bqr ∧crl

)] =
[∨

r

∨
q

(
aiq ∧bqr ∧crl

)] =
[∨

r

(∨
q

(
aiq ∧ bqr

)) ∧ crl

]
=

(A� B)� C

Supplementary Exercises

1. a) A b) A ∩ B c) A − B d) A ∩ B e) A ⊕ B 3. Yes
5. A−(A−B) = A−(A ∩ B) = A ∩ (A∩B) =A ∩ (A ∪
B) = (A ∩ A) ∪ (A∩B) = ∅ ∪ (A∩B) = A ∩ B 7. Let
A = {1}, B = ∅, C = {1}. Then (A − B) − C = ∅, but
A − (B − C) = {1}. 9. No. For example, let A = B =
{a, b}, C = ∅, and D = {a}. Then (A− B)− (C −D) =
∅ − ∅ = ∅, but (A − C) − (B − D) = {a, b} − {b} = {a}.
11. a) |∅| ≤ |A ∩ B| ≤ |A| ≤ |A ∪ B| ≤ |U | b) |∅| ≤
|A − B| ≤ |A ⊕ B| ≤ |A∪B| ≤ |A| + |B| 13. a) Yes, no
b) Yes, no c) f has inverse with f−1(a) = 3, f−1(b) = 4,
f−1(c) = 2, f−1(d)= 1; g has no inverse. 15. If f is one-
to-one, then f provides a bijection between S and f (S), so
they have the same cardinality. If f is not one-to-one, then
there exist elements x and y in S such that f (x) = f (y).
Let S = {x, y}. Then |S| = 2 but |f (S)| = 1. 17. Let
x ∈ A. Then Sf ({x}) = {f (y) | y ∈ {x}} = {f (x)}. By

the same reasoning, Sg({x}) = {g(x)}. Because Sf = Sg ,
we can conclude that {f (x)} = {g(x)}, and so necessarily
f (x) = g(x). 19. The equation is true if and only if the
sum of the fractional parts of x and y is less than 1. 21. The
equation is true if and only if either both x and y are in-
tegers, or x is not an integer but the sum of the fractional
parts of x and y is less than or equal to 1. 23. If x is an
integer, then �x� + �m − x� = x + m − x = m. Oth-
erwise, write x in terms of its integer and fractional parts:
x = n+ ε, where n = �x� and 0 < ε < 1. In this case �x� +
�m− x�=�n+ ε� + �m− n− ε� = n+m− n− 1=m− 1.
25. Write n = 2k + 1 for some integer k. Then n2 = 4k2 +
4k+1, so n2/4 = k2+k+ 1

4 . Therefore, �n2/4� = k2+k+1.
But (n2+3)/4 = (4k2+4k+1+3)/4 = k2+k+1. 27. Let
x = n+ (r/m)+ ε, where n is an integer, r is a nonnegative
integer less than m, and ε is a real number with 0 ≤ ε < 1/m.
The left-hand side is �nm+ r +mε� = nm+ r . On the right-
hand side, the terms �x� through �x+ (m+ r − 1)/m� are all
just n and the terms from �x + (m− r)/m� on are all n+ 1.
Therefore, the right-hand side is (m−r)n+r(n+1) = nm+r ,
as well. 29. 101 31. a1 = 1; a2n+1 = n · a2n for all
n > 0; and a2n = n + a2n−1 for all n > 0. The next
four terms are 5346, 5353, 37471, and 37479. 33. If each
f−1(j) is countable, then S = f−1(1) ∪ f−1(2) ∪ · · · is
the countable union of countable sets and is therefore count-
able by Exercise 27 in Section 2.5. 35. Because there is
a one-to-one correspondence between R and the open inter-
val (0, 1) (given by f (x) = 2 arctan(x)/π ), it suffices to
shows that |(0, 1) × (0, 1)| = |(0, 1)|. By the Schröder-
Bernstein theorem it suffices to find injective functions f :
(0, 1) → (0, 1) × (0, 1) and g : (0, 1) × (0, 1) → (0, 1).
Let f (x) = (x, 1

2 ). For g we follow the hint. Suppose
(x, y) ∈ (0, 1)× (0, 1), and represent x and y with their deci-
mal expansions x = 0.x1x2x3 . . . and y = 0.y1y2y3 . . ., never
choosing the expansion of any number that ends in an infinite
string of 9s. Let g(x, y) be the decimal expansion obtained by
interweaving these two strings, namely 0.x1y1x2y2x3y3 . . ..

37. A4n =
[

1 0
0 1

]
, A4n+1 =

[
0 1
−1 0

]
, A4n+2 =

[−1 0
0 −1

]
, A4n+3 =

[
0 −1
1 0

]
, for n ≥ 0 39. Suppose

that A =
[
a b

c d

]
. Let B =

[
0 1
0 0

]
. Because AB = BA,

it follows that c = 0 and a = d. Let B =
[

0 0
1 0

]
. Because

AB = BA, it follows that b = 0. Hence, A =
[
a 0
0 a

]
= aI.

41. a) Let A � 0 = [
bij

]
. Then bij = (ai1 ∧ 0)

∨ · · ·∨ (aip∧0) = 0. Hence, A�0 = 0. Similarly 0�A = 0.
b) A ∨ 0 = [

aij ∨ 0
] = [

aij

] = A. Hence A ∨ 0 = A.
Similarly 0∨A = A. c) A∧0 = [aij ∧ 0

] = [0] = 0. Hence
A ∧ 0 = 0. Similarly 0 ∧ A = 0.
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CHAPTER 3

Section 3.1

1. max := 1, i := 2, max := 8, i := 3, max := 12, i := 4,
i := 5, i := 6, i := 7, max := 14, i := 8, i := 9, i := 10,
i := 11
3. procedure AddUp(a1, . . . , an: integers)

sum : = a1

for i : = 2 to n

sum := sum + ai

return sum
5. procedure duplicates(a1, a2, . . . , an: integers in

nondecreasing order)
k := 0 {this counts the duplicates}
j := 2
while j ≤ n

if aj = aj−1 then
k := k + 1
ck := aj

while j ≤ n and aj = ck

j := j + 1
j := j + 1
{c1, c2, . . . , ck is the desired list}

7. procedure last even location(a1,a2, . . . ,an: integers)
k := 0
for i := 1 to n

if ai is even then k := i

return k {k = 0 if there are no evens}
9. procedure palindrome check(a1a2 . . . an: string)

answer := true
for i := 1 to �n/2�

if ai �= an+1−i then answer := false
return answer

11. procedure interchange(x, y: real numbers)
z := x

x := y

y := z

The minimum number of assignments needed is three.

13. Linear search: i := 1, i := 2, i := 3, i := 4, i := 5,
i := 6, i := 7, location := 7; binary search: i := 1, j := 8,
m := 4, i := 5, m := 6, i := 7, m := 7, j := 7, location := 7

15. procedure insert(x, a1, a2, . . . , an: integers)
{the list is in order: a1 ≤ a2 ≤ · · · ≤ an}
an+1 := x + 1
i := 1
while x > ai

i := i + 1
for j := 0 to n− i

an−j+1 := an−j

ai := x

{x has been inserted into correct position}

17. procedure first largest(a1, . . . , an: integers)
max := a1

location := 1
for i := 2 to n

if max < ai then
max := ai

location := i

return location

19. procedure mean-median-max-min(a, b, c: integers)
mean := (a + b + c)/ 3
{the six different orderings of a, b, c with respect

to ≥ will be handled separately}
if a ≥ b then

if b ≥ c then median := b;max := a;min := c
...

(The rest of the algorithm is similar.)

21. procedure first-three(a1, a2, . . . , an: integers)
if a1 > a2 then interchange a1 and a2

if a2 > a3 then interchange a2 and a3

if a1 > a2 then interchange a1 and a2

23. procedure onto(f : function from A to B where
A = {a1, . . . , an}, B = {b1, . . . , bm}, a1, . . . , an,
b1, . . . , bm are integers)

for i := 1 to m

hit(bi) := 0
count := 0
for j := 1 to n

if hit(f (aj )) = 0 then
hit(f (aj )) := 1
count := count+ 1

if count = m then return true else return false

25. procedure ones(a: bit string, a = a1a2 . . . an)

count:= 0
for i := 1 to n

if ai := 1 then
count := count+ 1

return count
27. procedure ternary search(s: integer, a1,a2, . . . , an:

increasing integers)
i := 1
j := n

while i < j − 1
l := �(i + j)/3�
u := �2(i + j)/3�
if x > au then i := u+ 1
else if x > al then
i := l + 1
j := u

else j := l

if x = ai then location := i

else if x = aj then location := j
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else location := 0
return location {0 if not found}

29. procedure find a mode(a1, a2, . . . , an: nondecreasing
integers)

modecount := 0
i := 1
while i ≤ n

value := ai

count := 1
while i ≤ n and ai = value

count := count+ 1
i := i + 1

if count > modecount then
modecount := count
mode := value

return mode
31. procedure find duplicate(a1, a2, . . . , an: integers)

location := 0
i := 2
while i ≤ n and location = 0
j := 1
while j < i and location = 0

if ai = aj then location := i

else j := j + 1
i := i + 1

return location
{location is the subscript of the first value that
repeats a previous value in the sequence}

33. procedure find decrease(a1, a2, . . . , an: positive
integers)

location := 0
i := 2
while i ≤ n and location = 0

if ai < ai−1 then location := i

else i := i + 1
return location
{location is the subscript of the first value less than
the immediately preceding one}

35. At the end of the first pass: 1, 3, 5, 4, 7; at the end of the
second pass: 1, 3, 4, 5, 7; at the end of the third pass: 1, 3, 4,
5, 7; at the end of the fourth pass: 1, 3, 4, 5, 7
37. procedure better bubblesort(a1, . . . , an: integers)

i : = 1; done : = false
while i < n and done = false

done : = true
for j : = 1 to n− i

if aj > aj+1 then
interchange aj and aj+1
done : = false

i : = i + 1
{a1, . . . , an is in increasing order}

39.At the end of the first, second, and third passes: 1, 3, 5, 7, 4;
at the end of the fourth pass: 1, 3, 4, 5, 7 41. a) 1, 5, 4, 3,
2; 1, 2, 4, 3, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 b) 1, 4, 3, 2,
5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 c) 1, 2, 3, 4,
5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 43. We carry

out the linear search algorithm given as Algorithm 2 in this
section, except that we replace x �= ai by x < ai , and
we replace the else clause with else location := n + 1.
45. 2 + 3 + 4 + · · · + n = (n2 + n − 2)/2 47. Find the
location for the 2 in the list 3 (one comparison), and insert it
in front of the 3, so the list now reads 2, 3, 4, 5, 1, 6. Find
the location for the 4 (compare it to the 2 and then the 3),
and insert it, leaving 2, 3, 4, 5, 1, 6. Find the location for the
5 (compare it to the 3 and then the 4), and insert it, leaving
2, 3, 4, 5, 1, 6. Find the location for the 1 (compare it to the
3 and then the 2 and then the 2 again), and insert it, leaving
1, 2, 3, 4, 5, 6. Find the location for the 6 (compare it to the
3 and then the 4 and then the 5), and insert it, giving the final
answer 1, 2, 3, 4, 5, 6.
49. procedure binary insertion sort(a1, a2, . . . , an:

real numbers with n ≥ 2)

for j := 2 to n

{binary search for insertion location i}
left := 1
right := j − 1
while left < right

middle := �(left+ right)/2�
if aj > amiddle then left := middle+ 1
else right := middle

if aj < aleft then i := left else i := left+ 1
{insert aj in location i by moving ai through aj−1

toward back of list}
m := aj

for k := 0 to j − i − 1
aj−k := aj−k−1

ai := m

{a1, a2, . . . , an are sorted}
51. The variation from Exercise 50 53. a) Two quarters, one
penny b) Two quarters, one dime, one nickel, four pennies
c) A three quarters, one penny d) Two quarters, one dime
55. Greedy algorithm uses fewest coins in parts (a), (c), and
(d). a) Two quarters, one penny b) Two quarters, one dime,
nine pennies c) Three quarters, one penny d) Two quarters,
one dime 57. The 9:00–9:45 talk, the 9:50–10:15 talk, the
10:15–10:45 talk, the 11:00–11:15 talk 59. a) Order the
talks by starting time. Number the lecture halls 1, 2, 3, and
so on. For each talk, assign it to lowest numbered lecture hall
that is currently available. b) If this algorithm uses n lecture
halls, then at the point the nth hall was first assigned, it had
to be used (otherwise a lower-numbered hall would have been
assigned), which means that n talks were going on simulta-
neously (this talk just assigned and the n − 1 talks currently
in halls 1 through n− 1). 61. Here we assume that the men
are the suitors and the women the suitees.
procedure stable(M1, M2, . . . , Ms, W1, W2, . . . , Ws:

preference lists)
for i := 1 to s

mark man i as rejected
for i := 1 to s

set man i’s rejection list to be empty
for j := 1 to s
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set woman j ’s proposal list to be empty
while rejected men remain

for i := 1 to s

if man i is marked rejected then add i to the
proposal list for the woman j who ranks highest
on his preference list but does not appear on his
rejection list, and mark i as not rejected

for j := 1 to s

if woman j ’s proposal list is nonempty then
remove from j ’s proposal list all men i

except the man i0 who ranks highest on her
preference list, and for each such man i mark
him as rejected and add j to his rejection list

for j := 1 to s

match j with the one man on j ’s proposal list
{This matching is stable.}
63. If the assignment is not stable, then there is a man m and a
woman w such that m prefers w to the woman w′ with whom
he is matched, and w prefers m to the man with whom she is
matched. But m must have proposed to w before he proposed
to w′, because he prefers the former. Because m did not end
up matched with w, she must have rejected him. Women re-
ject a suitor only when they get a better proposal, and they
eventually get matched with a pending suitor, so the woman
with whom w is matched must be better in her eyes than m,
contradicting our original assumption. Therefore the marriage
is stable. 65. Run the two programs on their inputs concur-
rently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) C = 1, k = 10
b) C = 4, k = 7c) Nod) C = 5, k = 1e) C = 1, k = 0 f) C =
1, k = 2 3. x4+9x3+4x+7 ≤ 4x4 for all x > 9; witnesses
C = 4, k = 9 5. (x2+1)/(x+1) = x−1+2/(x+1) < x

for all x > 1; witnesses C = 1, k = 1 7. The choices of C

and k are not unique. a) n = 3, C = 3, k = 1 b) n = 3,
C = 4, k = 1 c) n = 1, C = 2, k = 1 d) n = 0, C = 2, k = 1
9. x2 + 4x + 17 ≤ 3x3 for all x > 17, so x2 + 4x + 17 is
O(x3), with witnesses C = 3, k = 17. However, if x3 were
O(x2 + 4x + 17), then x3 ≤ C(x2 + 4x + 17) ≤ 3Cx2 for
some C, for all sufficiently large x, which implies that x ≤ 3C

for all sufficiently large x, which is impossible. Hence, x3 is
not O(x2+ 4x+ 17). 11. 3x4+ 1 ≤ 4x4 = 8(x4/2) for all
x > 1, so 3x4 + 1 is O(x4/2), with witnesses C = 8, k = 1.
Also x4/2 ≤ 3x4+1 for all x > 0, so x4/2 is O(3x4+1), with
witnesses C = 1, k = 0. 13. Because 2n ≤ 3n for all n > 0,
it follows that 2n is O(3n), with witnesses C = 1, k = 0.
However, if 3n were O(2n), then for some C, 3n ≤ C · 2n for
all sufficiently large n. This says that C ≥ (3/2)n for all suffi-
ciently large n, which is impossible. Hence, 3n is not O(2n).
15. All functions for which there exist real numbers k and C

with |f (x)| ≤ C for x > k. These are the functions f (x) that
are bounded for all sufficiently large x. 17. There are con-
stants C1, C2, k1, and k2 such that |f (x)| ≤ C1|g(x)| for all
x > k1 and |g(x)| ≤ C2|h(x)| for all x > k2. Hence, for x >

max(k1, k2) it follows that |f (x)| ≤ C1|g(x)| ≤ C1C2|h(x)|.
This shows that f (x) is O(h(x)). 19. 2n+1 is O(2n);
22n is not. 21. 1000 log n,

√
n, n log n, n2/1000000, 2n,

3n, 2n! 23. The algorithm that uses n log n operations
25. a) O(n3) b) O(n5) c) O(n3 · n!) 27. a) O(n2 log n)

b) O(n2(log n)2) c) O(n2n
) 29. a) Neither �(x2) nor

�(x2) b) �(x2) and �(x2) c) Neither �(x2) nor �(x2)

d) �(x2), but not �(x2) e) �(x2), but not �(x2) f) �(x2)

and �(x2) 31. If f (x) is �(g(x)), then there exist con-
stants C1 and C2 with C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|.
It follows that |f (x)| ≤ C2|g(x)| and |g(x)| ≤ (1/C1)|f (x)|
for x > k. Thus, f (x) is O(g(x)) and g(x) is O(f (x)). Con-
versely, suppose that f (x) is O(g(x)) and g(x) is O(f (x)).
Then there are constants C1, C2, k1, and k2 such that |f (x)| ≤
C1|g(x)| for x > k1 and |g(x)| ≤ C2|f (x)| for x > k2. We can
assume that C2 > 0 (we can always make C2 larger). Then we
have (1/C2)|g(x)| ≤ |f (x)| ≤ C1|g(x)| for x > max(k1, k2).
Hence, f (x) is �(g(x)). 33. If f (x) is �(g(x)), then f (x)

is both O(g(x)) and �(g(x)). Hence, there are positive con-
stants C1, k1, C2, and k2 such that |f (x)| ≤ C2|g(x)| for
all x > k2 and |f (x)| ≥ C1|g(x)| for all x > k1. It fol-
lows that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever x > k,
where k = max(k1,k2). Conversely, if there are positive con-
stants C1, C2, and k such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|
for x > k, then taking k1 = k2 = k shows that f (x) is both
O(g(x)) and �(g(x)).

35.

k x

y C2g(x)

C1g (x)

f (x)

37. If f (x) is �(1), then |f (x)| is bounded between pos-
itive constants C1 and C2. In other words, f (x) cannot
grow larger than a fixed bound or smaller than the nega-
tive of this bound and must not get closer to 0 than some
fixed bound. 39. Because f (x) is O(g(x)), there are con-
stants C and k such that |f (x)| ≤ C|g(x)| for x > k.
Hence, |f n(x)| ≤ Cn|gn(x)| for x > k, so f n(x) is
O(gn(x)) by taking the constant to be Cn. 41. Because
f (x) and g(x) are increasing and unbounded, we can assume
f (x) ≥ 1 and g(x) ≥ 1 for sufficiently large x. There are
constants C and k with f (x) ≤ Cg(x) for x > k. This
implies that log f (x) ≤ log C + log g(x) < 2 log g(x)

for sufficiently large x. Hence, log f (x) is O(log g(x)).
43. By definition there are positive constraints C1, C′1,
C2, C′2, k1, k′1, k2, and k′2 such that f1(x) ≥ C1|g(x)|
for all x > k1, f1(x) ≤ C′1|g(x)| for all x > k′1,
f2(x) ≥ C2|g(x)| for all x > k2, and f2(x) ≤ C′2|g(x)|
for all x > k′2. Adding the first and third inequalities shows
that f1(x) + f2(x) ≥ (C1 + C2)|g(x)| for all x > k where
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k = max(k1, k2). Adding the second and fourth inequalities
shows that f1(x) + f2(x) ≤ (C′1 + C′2)|g(x)| for all x > k′
where k′ = max(k′1, k′2). Hence, f1(x) + f2(x) is �(g(x)).
This is no longer true if f1 and f2 can assume negative values.
45. This is false. Let f1 = x2 + 2x, f2(x) = x2 + x,
and g(x) = x2. Then f1(x) and f2(x) are both O(g(x)),
but (f1 − f2)(x) is not. 47. Take f (n) to be the func-
tion with f (n) = n if n is an odd positive integer and
f (n) = 1 if n is an even positive integer and g(n) to be the
function with g(n) = 1 if n is an odd positive integer and
g(n) = n if n is an even positive integer. 49. There are
positive constants C1, C2, C′1, C′2, k1, k′1, k2, and k′2 such that
|f1(x)| ≥ C1|g1(x)| for all x > k1, |f1(x)| ≤ C′1|g1(x)|
for all x ≥ k′1, |f2(x)| > C2|g2(x)| for all x > k2, and
|f2(x)| ≤ C′2|g2(x)| for all x > k′2. Because f2 and g2

are never zero, the last two inequalities can be rewritten as
|1/f2(x)| ≤ (1/C2)|1/g2(x)| for all x > k2 and |1/f2(x)| ≥
(1/C′2)|1/g2(x)| for all x > k′2. Multiplying the first and
rewritten fourth inequalities shows that |f1(x)/f2(x)| ≥
(C1/C′2)|g1(x)/g2(x)| for all x > max(k1, k

′
2), and mul-

tiplying the second and rewritten third inequalities
gives |f1(x)/f2(x)| ≤ (C′1/C2)|g1(x)/g2(x)| for all x >

max(k′1, k2). It follows that f1/f2 is big-Theta of g1/g2.
51. There exist positive constants C1, C2, k1, k2, k′1, k′2
such that |f (x, y)| ≤ C1|g(x, y)| for all x > k1 and y > k2

and |f (x, y)| ≥ C2|g(x, y)| for all x > k′1 and y > k′2.
53. (x2 + xy + x log y)3 < (3x2y3) = 27x6y3 for
x > 1 and y > 1, because x2 < x2y, xy < x2y, and
x log y < x2y. Hence, (x2 + xy + x log y)3 is O(x6y3).
55. For all positive real numbers x and y, �xy� ≤ xy.

Hence, �xy� is O(xy) from the definition, taking C = 1
and k1 = k2 = 0. 57. Clearly nd < nc for all n ≥ 2;
therefore nd is O(nc). The ratio nd/nc = nd−c is un-
bounded so there is no constant C such that nd ≤ Cnc for
large n. 59. If f and g are positive-valued functions such
that limn→∞ f (x)/g(x) = C <∞, then f (x) < (C+1)g(x)

for large enough x, so f (n) is O(g(n)). If that limit is ∞,
then clearly f (n) is not O(g(n)). Here repeated applica-
tions of L’Hôpital’s rule shows that limx→∞ xd/bx = 0
and limx→∞ bx/xd = ∞. 61. a) limx→∞ x2/x3 =
limx→∞ 1/x = 0 b) limx→∞ x log x

x2 = limx→∞ log x
x

=
limx→∞ 1

x ln 2 = 0 (using L’Hôpital’s rule) c) limx→∞ x2

2x =
limx→∞ 2x

2x ·ln 2 = limx→∞ 2
2x ·(ln 2)2 = 0 (using L’Hôpital’s

rule) d) limx→∞ x2+x+1
x2 = limx→∞

(
1+ 1

x
+ 1

x2

)
= 1 �= 0

63.

x

y

x log x
x log x

x2

x log x

x2
= 0lim

x �

x2

65. No. Take f (x) = 1/x2 and g(x) = 1/x. 67. a) Be-
cause limx→∞ f (x)/g(x) = 0, |f (x)|/|g(x)| < 1 for
sufficiently large x. Hence, |f (x)| < |g(x)| for x > k

for some constant k. Therefore, f (x) is O(g(x)). b) Let
f (x) = g(x) = x. Then f (x) is O(g(x)), but f (x) is
not o(g(x)) because f (x)/g(x) = 1. 69. Because f2(x) is
o(g(x)), from Exercise 67(a) it follows that f2(x) is O(g(x)).
By Corollary 1, we have f1(x)+f2(x) is O(g(x)). 71. We
can easily show that (n− i)(i+ 1)≥ n for i= 0,1, . . . , n− 1.
Hence, (n!)2 = (n · 1)((n − 1) · 2) · ((n − 2) · 3) · · · (2 · (n −
1)) · (1 ·n)≥ nn. Therefore, 2 log n! ≥ n log n. 73. Compute
that log 5! ≈ 6.9 and (5 log 5)/4 ≈ 2.9, so the in-
equality holds for n = 5. Assume n ≥ 6. Because n!
is the product of all the integers from n down to 1, we
have n! > n(n − 1)(n − 2) · · · �n/2� (because at least
the term 2 is missing). Note that there are more than n/2
terms in this product, and each term is at least as big as
n/2. Therefore the product is greater than (n/2)(n/2). Tak-
ing the log of both sides of the inequality, we have log n! >

log
(

n
2

)n/2 = n
2 log n

2 = n
2 (log n− 1) > (n log n)/4, because

n > 4 implies log n − 1 > (log n)/2. 75. All are not
asymptotic.

Section 3.3

1. O(1) 3. O(n2) 5. 2n− 1 7. Linear 9. O(n)

11. a) procedure disjointpair(S1, S2, . . . , Sn :
subsets of {1, 2, . . . , n})

answer := false
for i := 1 to n

for j := i + 1 to n

disjoint := true
for k := 1 to n

if k ∈ Si and k ∈ Sj then disjoint := false
if disjoint then answer := true

return answer

b) O(n3) 13. a) power := 1, y := 1; i := 1,
power := 2, y := 3; i := 2, power := 4, y := 15
b) 2n multiplications and n additions 15. a) 2109 ≈103× 108

b) 109 c) 3.96 × 107 d) 3.16 × 104 e) 29 f) 12

17. a) 2260·1012

b) 260·1012
c) �2

√
60·106� ≈ 2 × 102331768

d) 60,000,000 e) 7,745,966 f) 45 g) 6 19. a) 36 years
b) 13 days c) 19 minutes 21. a) Less than 1 millisec-
ond more b) 100 milliseconds more c) 2n + 1 milliseconds
more d) 3n2 + 3n+ 1 milliseconds more e) Twice as much
time f) 22n+1 times as many milliseconds g) n + 1 times
as many milliseconds 23. The average number of compar-
isons is (3n+ 4)/2. 25. O(log n) 27. O(n) 29. O(n2)

31. O(n) 33. O(n) 35. O(log n) comparisons; O(n2)

swaps 37. O(n22n) 39. a) doubles b) increases by 1
41. Use Algorithm 1, where A and B are now n × n up-
per triangular matrices, by replacing m by n in line 1, and
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having q iterate only from i to j , rather than from 1 to k.
43. n(n+ 1)(n+ 2)/6 45. A((BC)D)

Supplementary Exercises

1. a) procedure last max(a1, . . . , an: integers)
max := a1

last := 1
i := 2
while i ≤ n

if ai ≥ max then
max := ai

last := i

i := i + 1
return last

b) 2n− 1 = O(n) comparisons

3. a) procedure pair zeros(b1b2 . . . bn: bit string, n ≥ 2)
x := b1

y := b2

k := 2
while k < n and (x �= 0 or y �= 0)

k := k + 1
x := y

y := bk

if x = 0 and y = 0 then print “YES”
else print “NO”

b) O(n)

5. a) and b)
procedure smallest and largest(a1, a2, . . . , an: integers)
min := a1

max := a1

for i := 2 to n

if ai < min then min := ai

if ai > max then max := ai

{min is the smallest integer among the input, and max is the
largest}

c) 2n− 2

7. Before any comparisons are done, there is a possibility
that each element could be the maximum and a possibility
that it could be the minimum. This means that there are 2n

different possibilities, and 2n − 2 of them have to be elimi-
nated through comparisons of elements, because we need to
find the unique maximum and the unique minimum. We clas-
sify comparisons of two elements as “virgin” or “nonvirgin,”
depending on whether or not both elements being compared
have been in any previous comparison. A virgin comparison
eliminates the possibility that the larger one is the minimum
and that the smaller one is the maximum; thus each virgin
comparison eliminates two possibilities, but it clearly cannot
do more. A nonvirgin comparison must be between two ele-
ments that are still in the running to be the maximum or two
elements that are still in the running to be the minimum, and
at least one of these elements must not be in the running for

the other category. For example, we might be comparing x

and y, where all we know is that x has been eliminated as
the minimum. If we find that x > y in this case, then only
one possibility has been ruled out—we now know that y is
not the maximum. Thus in the worst case, a nonvirgin com-
parison eliminates only one possibility. (The cases of other
nonvirgin comparisons are similar.) Now there are at most
�n/2� comparisons of elements that have not been compared
before, each removing two possibilities; they remove 2�n/2�
possibilities altogether. Therefore we need 2n − 2 − 2�n/2�
more comparisons that, as we have argued, can remove only
one possibility each, in order to find the answers in the worst
case, because 2n− 2 possibilities have to be eliminated. This
gives us a total of 2n − 2 − 2�n/2� + �n/2� comparisons in
all. But 2n− 2− 2�n/2� + �n/2� = 2n− 2− �n/2� = 2n−
2 + �−n/2� =�2n − n/2� − 2 = �3n/2� − 2, as desired.
9. The following algorithm has worst-case complexity O(n4).
procedure equal sums(a1, a2, . . . , an)

for i := 1 to n

for j := i + 1 to n {since we want i < j}
for k := 1 to n

for l := k + 1 to n {since we want k < l}
if ai + aj = ak + al and (i, j) �= (k, l)

then output these pairs
11. At end of first pass: 3, 1, 4, 5, 2, 6; at end of second
pass: 1, 3, 2, 4, 5, 6; at end of third pass: 1, 2, 3, 4, 5, 6;
fourth pass finds nothing to exchange and algorithm termi-
nates 13. There are possibly as many as n passes through
the list, and each pass uses O(n) comparisons. Thus there
are O(n2) comparisons in all. 15. Because log n < n, we
have (n log n + n2)3 ≤ (n2 + n2)3 ≤ (2n2)3 = 8n6 for
all n > 0. This proves that (n log n + n2)3 is O(n6), with
witnesses C = 8 and k = 0. 17. O(x22x) 19. Note that
n!
2n = n

2 · n−1
2 · · · 3

2 · 22 · 12 >n
2 ·1·1 · · · 1· 12 = n

4 . 21. All of these
functions are of the same order. 23. 2107 25. (log n)2,
2
√

log2 n, n(log n)1001, n1.0001, 1.0001n, nn 27. For exam-
ple, f (n) = n2�n/2�+1 and g(n) = n2�n/2�
29. a)

procedure brute(a1, a2, . . . , an : integers)
for i := 1 to n− 1

for j := i + 1 to n

for k := 1 to n

if ai + aj = ak then return true else return false
b) O(n3)

31. For m1: w1 and w2; for m2: w1 and w3; for m3: w2 and
w3; for w1: m1 and m2; for w2: m1 and m3; for w3: m2 and
m3 33. A matching in which each woman is assigned her
valid partner ranking highest on her preference list is female
optimal; a matching in which each man is assigned his valid
partner ranking lowest on his preference list is male pessi-
mal. 35. a) Modify the preamble to Exercise 60 in Sec-
tion 3.1 so that there are s men m1, m2, . . . , ms and t women
w1, w2, . . . , wt . A matching will contain min(s, t) marriages.
The definition of “stable marriage” is the same, with the un-
derstanding that each person prefers any mate to being un-
matched. b) Create |s − t | fictitious people (men or women,
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whichever is in shorter supply) so that the number of men
and the number of women become the same, and put these
fictitious people at the bottom of everyone’s preference lists.
c) This follows immediately from Exercise 63 in Section 3.1.
37. 5; 15 39. The first situation in Exercise 37 41. a) For
each subset S of {1, 2, . . . , n}, compute

∑
j∈S wj . Keep track

of the subset giving the largest such sum that is less than or
equal to W , and return that subset as the output of the algo-
rithm. b) The food pack and the portable stove 43. a) The
makespan is always at least as large as the load on the proces-
sor assigned to do the lengthiest job, which must be at least
maxj=1,2,...,n tj . Therefore the minimum makespan satisfies
this inequality. b) The total amount of time the processors
need to spend working on the jobs (the total load) is

∑n
j=1 tj .

Therefore the average load per processor is 1
p

∑n
j=1 tj . The

maximum load cannot be any smaller than the average, so the
minimum makespan is always at least this large. 45. Pro-
cessor 1: jobs 1, 4; processor 2: job 2; processor 3: jobs 3, 5

CHAPTER 4

Section 4.1

1. a) Yes b) No c) Yes d) No 3. Suppose that a | b. Then
there exists an integer k such that ka = b. Because a(ck) = bc

it follows that a | bc. 5. If a | b and b | a, there are integers
c and d such that b = ac and a = bd. Hence, a = acd.
Because a �= 0 it follows that cd = 1. Thus either c = d = 1
or c = d = −1. Hence, either a = b or a = −b. 7. Because
ac | bc there is an integer k such that ack = bc. Hence, ak = b,
so a | b. 9. a) 2, 5 b) −11, 10 c) 34, 7 d) 77, 0 e) 0, 0
f) 0, 3 g) −1, 2 h) 4, 0 11. a) 7:00 b) 8:00 c) 10:00
13. a) 10 b) 8 c) 0 d) 9 e) 6 f) 11 15. If a mod m =
b mod m, then a and b have the same remainder when di-
vided by m. Hence, a = q1m + r and b = q2m + r , where
0 ≤ r < m. It follows that a−b = (q1−q2)m, so m | (a−b).
It follows that a ≡ b (mod m). 17. There is some b with
(b − 1)k < n ≤ bk. Hence, (b − 1)k ≤ n − 1 < bk. Divide
by k to obtain b− 1 < n/k ≤ b and b− 1 ≤ (n− 1)/k < b.
Hence, �n/k� = b and �(n− 1)/k� = b− 1. 19. x mod m

if x mod m ≤ �m/2� and (x mod m) − m if x mod m >

�m/2� 21. a) 1 b) 2 c) 3 d) 9 23. a) 1, 109 b) 40,
89 c) −31, 222 d) −21, 38259 25. a) −15 b) −7 c) 140
27. −1,−26,−51,−76, 24, 49, 74, 99 29. a) No b) No
c) Yes d) No 31. a) 13 a) 6 33. a) 9 b) 4 c) 25 d) 0
35. Let m = tn. Because a ≡ b (mod m) there exists an
integer s such that a = b + sm. Hence, a = b + (st)n,
so a ≡ b (mod n). 37. a) Let m = c = 2, a = 0,
and b = 1. Then 0 = ac ≡ bc = 2 (mod 2), but
0 = a �≡ b = 1 (mod 2). b) Let m = 5, a = b = 3, c = 1,
and d = 6. Then 3 ≡ 3 (mod 5) and 1 ≡ 6 (mod 5), but
31 = 3 �≡ 4 ≡ 729 = 36 (mod 5). 39. By Exercise 38 the
sum of two squares must be either 0 + 0 = 0, 0 + 1 = 1,
or 1 + 1 = 2, modulo 4, never 3, and therefore not of the
form 4k + 3. 41. Because a ≡ b (mod m), there exists an

integer s such that a = b + sm, so a − b = sm. Then
ak − bk = (a − b)(ak−1 + ak−2b + · · · + abk−2 + bk−1),
k ≥ 2, is also a multiple of m. It follows that ak ≡ bk (mod m).
43. To prove closure, note that a ·m b = (a ·b) mod m, which
by definition is an element of Zm. Multiplication is associa-
tive because (a ·m b) ·m c and a ·m (b ·m c) both equal
(a · b · c) mod m and multiplication of integers is associa-
tive. Similarly, multiplication in Zm is commutative because
multiplication in Z is commutative, and 1 is the multiplicative
identity for Zm because 1 is the multiplicative identity for Z.
45. 0+50 = 0, 0+51 = 1, 0+52 = 2, 0+53 = 3, 0+54 =
4; 1+51 = 2, 1+52 = 3, 1+53 = 4, 1+54 = 0; 2+52 =
4, 2+53 = 0, 2+54 = 1; 3+53 = 1, 3+54 = 2; 4+44 = 3
and 0·50 = 0, 0·51 = 0, 0·52 = 0, 0·53 = 0, 0·54 = 0; 1·51 =
1, 1·52 = 2, 1·53 = 3, 1·54 = 4; 2·52 = 4, 2·53 = 1, 2·54 =
3; 3·53 = 4, 3·54 = 2; 4·54 = 1 47. f is onto but not
one-to-one (unless d = 1); g is neither.

Section 4.2

1. a) 1110 0111 b) 1 0001 1011 0100 c) 1 0111 11010110
1100 3. a) 31 b) 513 c) 341 d) 26,896 5. a) 1 0111
1010 b) 11 1000 0100 c) 1 0001 0011 d) 101 0000
1111 7. a) 1000 0000 1110 b) 1 0011 0101 1010 1011
c) 10101011 1011 1010 d) 1101 1110 1111 1010 11001110
1101 9. 1010 1011 1100 1101 1110 1111 11. (B7B)16
13. Adding up to three leading 0s if necessary, write the binary
expansion as (. . . b23b22b21b20b13b12b11b10b03b02b01b00)2.
The value of this numeral is b00 + 2b01 + 4b02 + 8b03 +
24b10 + 25b11 + 26b12 + 27b13 + 28b20 + 29b21 + 210b22 +
211b23 + · · · , which we can rewrite as b00 +
2b01 + 4b02 + 8b03 + (b10 + 2b11 + 4b12 + 8b13) ·
24 + (b20 + 2b21 + 4b22 + 8b23) · 28 + · · · . Now
(bi3bi2bi1bi0)2 translates into the hexadecimal digit hi .
So our number is h0 + h1 · 24 + h2 · 28 + · · · =
h0 + h1 · 16 + h2 · 162 + · · · , which is the hex-
adecimal expansion (. . . h1h1h0)16. 15 Adding up to
two leading 0s if necessary, write the binary expansion as
(. . . b22b21b20b12b11b10b02b01b00)2. The value of this nu-
meral is b00+2b01+4b02+23b10+24b11+25b12+26b20+
27b21 + 28b22 + · · · , which we can rewrite as b00 + 2b01 +
4b02+(b10+2b11+4b12) ·23+(b20+2b21+4b22) ·26+· · · .
Now (bi2bi1bi0)2 translates into the octal digit hi . So our num-
ber is h0+h1 ·23+h2 ·26+· · · = h0+h1 ·8+h2 ·82+· · · ,
which is the octal expansion (. . . h1h1h0)8. 17. 1 1101
1100 1010 1101 0001, 1273)8 19. Convert the given octal
numeral to binary, then convert from binary to hexadecimal
using Example 7. 21. a) 1011 1110, 10 0001 0000 0001
b) 1 1010 1100, 1011 0000 0111 0011 c) 100 1001 1010,
101 0010 1001 0110 0000 d) 110 0000 0000,
1000 0000 0001 1111 1111 23. a) 1132, 144,305 b) 6273,
2,134,272 c) 2110, 1,107,667 d) 57,777, 237,326,216
25. 436 27. 27 29. The binary expansion of the integer is
the unique such sum. 31. Let a = (an−1an−2 . . . a1a0)10.
Then a = 10n−1an−1 + 10n−2an−2 + · · · + 10a1 + a0
≡ an−1 + an−2 + · · · + a1 + a0 (mod 3), because
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10j ≡ 1 (mod 3)) for all nonnegative integers j . It fol-
lows that 3 | a if and only if 3 divides the sum of the dec-
imal digits of a. 33. Let a = (an−1an−2 . . . a1a0)2. Then
a = a0 + 2a1 + 22a2 + · · · + 2n−1an−1 ≡ a0 − a1 + a2−
a3 + · · · ± an−1 (mod 3). It follows that a is divisible by
3 if and only if the sum of the binary digits in the even-
numbered positions minus the sum of the binary digits in the
odd-numbered positions is divisible by 3. 35. a) −6 b) 13
c) −14 d) 0 37. The one’s complement of the sum is found
by adding the one’s complements of the two integers except
that a carry in the leading bit is used as a carry to the last bit
of the sum. 39. If m ≥ 0, then the leading bit an−1 of the
one’s complement expansion of m is 0 and the formula reads
m =∑n−2

i=0 ai2i . This is correct because the right-hand side
is the binary expansion of m. When m is negative, the leading
bit an−1 of the one’s complement expansion of m is 1. The
remaining n− 1 bits can be obtained by subtracting−m from
111 . . . 1 (where there are n− 1 1s), because subtracting a bit
from 1 is the same as complementing it. Hence, the bit string
an−2 . . . a0 is the binary expansion of (2n−1 − 1) − (−m).
Solving the equation (2n−1 − 1) − (−m) = ∑n−2

i=0 ai2i for
m gives the desired equation because an−1 = 1. 41. a) −7
b) 13 c) −15 d) −1 43. To obtain the two’s complement
representation of the sum of two integers, add their two’s
complement representations (as binary integers are added)
and ignore any carry out of the leftmost column. However,
the answer is invalid if an overflow has occurred. This happens
when the leftmost digits in the two’s complement representa-
tion of the two terms agree and the leftmost digit of the answer
differs. 45. If m ≥ 0, then the leading bit an−1 is 0 and the
formula reads m =∑n−2

i=0 ai2i . This is correct because the
right-hand side is the binary expansion of m. If m < 0, its
two’s complement expansion has 1 as its leading bit and the
remaining n−1 bits are the binary expansion of 2n−1 − (−m).
This means that (2n−1)− (−m) =∑n−2

i=0 ai2i . Solving for m

gives the desired equation because an−1 = 1. 47. 4n

49. procedure Cantor(x: positive integer)
n := 1; f := 1
while (n+ 1) · f ≤ x

n := n+ 1
f := f · n

y := x

while n > 0
an := �y/f �
y := y − an · f
f := f/n

n := n− 1
{x = ann! + an−1(n− 1)! + · · · + a11!}

51. First step: c = 0, d = 0, s0 = 1; second step: c = 0,
d = 1, s1 = 0; third step: c = 1, d = 1, s2 = 0; fourth step:
c = 1, d = 1, s3 = 0; fifth step: c = 1, d = 1, s4 = 1; sixth
step: c = 1, s5 = 1

53. procedure subtract(a, b: positive integers, a > b,
a = (an−1an−2 . . . a1a0)2,
b = (bn−1bn−2 . . . b1b0)2)

B := 0 {B is the borrow}
for j := 0 to n− 1

if aj ≥ bj + B then
sj := aj − bj − B

B := 0
else
sj := aj + 2− bj − B

B := 1
{(sn−1sn−2 . . . s1s0)2 is the difference}

55. procedure compare(a, b: positive integers,
a = (anan−1 . . . a1a0)2,
b = (bnbn−1 . . . b1b0)2)

k := n

while ak = bk and k > 0
k := k − 1

if ak = bk then print “a equals b”
if ak > bk then print “a is greater than b”
if ak < bk then print “a is less than b”

57. O(log n) 59. The only time-consuming part of the al-
gorithm is the while loop, which is iterated q times. The work
done inside is a subtraction of integers no bigger than a, which
has log a bits. The result now follows from Example 9.

Section 4.3

1. 29, 71, 97 prime; 21, 111, 143 not prime 3. a) 23 · 11
b) 2 · 32 · 7 c) 36 d) 7 · 11 · 13 e) 11 · 101 f) 2 · 33·
5 · 7 · 13 · 37 5. 28 · 34 · 52 · 7
7. procedure primetester(n : integer greater than 1)

isprime := true
d := 2
while isprime and d ≤ √n

if n mod d = 0 then isprime := false
else d := d + 1

return isprime

9. Write n = rs, where r > 1 and s > 1. Then 2n − 1 =
2rs−1 = (2r )s−1 = (2r−1)((2r )s−1+(2r )s−2+(2r )s−3+
· · · + 1). The first factor is at least 22 − 1 = 3 and the second
factor is at least 22 + 1 = 5. This provides a factoring of
2n− 1 into two factors greater than 1, so 2n− 1 is composite.
11. Suppose that log2 3 = a/b where a, b ∈ Z+ and b �= 0.
Then 2a/b = 3, so 2a = 3b. This violates the fundamental
theorem of arithmetic. Hence, log2 3 is irrational. 13. 3, 5,
and 7 are primes of the desired form. 15. 1, 7, 11, 13, 17,
19, 23, 29 17. a) Yes b) No c) Yes d) Yes 19. Suppose
that n is not prime, so that n = ab, where a and b are inte-
gers greater than 1. Because a > 1, by the identity in the hint,
2a−1 is a factor of 2n−1 that is greater than 1, and the second
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factor in this identity is also greater than 1. Hence, 2n − 1 is
not prime. 21. a) 2 b) 4 c) 12 23. φ(pk) = pk − pk−1

25. a) 35 · 53 b) 1 c) 2317 d) 41 · 43 · 53 e) 1 f) 1111
27. a) 211 · 37 · 59 · 73 b) 29 · 37 · 55 · 73 · 11 ·
13 · 17 c) 2331 d) 41 · 43 · 53 e) 212313517721 f) Undefined
29. gcd (92928, 123552) = 1056; lcm(92928, 123552) =
10,872,576; both products are 11,481,440,256. 31. Because
min(x, y) + max(x, y) = x + y, the exponent of pi in
the prime factorization of gcd(a, b) · lcm(a, b) is the sum of
the exponents of pi in the prime factorizations of a and b.
33. a) 6 b) 3 c) 11 d) 3 e) 40 f) 12 35. 9 37. By Exer-
cise 36 it follows that gcd(2b − 1, (2a − 1) mod (2b − 1)) =
gcd(2b − 1, 2a mod b − 1). Because the exponents involved
in the calculation are b and a mod b, the same as the quan-
tities involved in computing gcd(a, b), the steps used by the
Euclidean algorithm to compute gcd(2a − 1, 2b − 1) run in
parallel to those used to compute gcd(a, b) and show that
gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1. 39. a) 1 =
(−1) · 10 + 1 · 11 b) 1 = 21 · 21 + (−10) · 44
c) 12 = (−1) · 36 + 48 d) 1 = 13 · 55 + (−21) · 34
e) 3 = 11·213+(−20)·117 f) 223 = 1·0+1·223 g) 1= 37·
2347 + (−706) · 123 h) 2= 1128 · 3454 +(−835) · 4666
i) 1= 2468 · 9999+(−2221)·11111 41. (−3)·26+1·91=
13 43. 34 · 144+ (−55) · 89 = 1

45. procedure extended Euclidean(a, b: positive integers)
x := a

y := b

oldolds := 1
olds := 0
oldoldt := 0
oldt := 1
while y �= 0
q := x div y

r := x mod y

x := y

y := r

s := oldolds− q · olds
t := oldoldt− q · oldt
oldolds := olds
oldoldt := oldt
olds := s

oldt := t

{gcd(a, b) is x, and (oldolds)a+ (oldoldt)b = x}
47. a) an = 1 if n is prime and an = 0 otherwise. b) an is the
smallest prime factor of n with a1 = 1. c) an is the number of
positive divisors of n. d) an = 1 if n has no divisors that are
perfect squares greater than 1 and an = 0 otherwise. e) an is
the largest prime less than or equal to n. f) an is the product of
the first n − 1 primes. 49. Because every second integer is
divisible by 2, the product is divisible by 2. Because every third
integer is divisible by 3, the product is divisible by 3. Therefore
the product has both 2 and 3 in its prime factorization and is
therefore divisible by 3·2 = 6. 51. n = 1601 is a counterex-
ample. 53 Setting k = a+b+1 will produce the composite
number a(a+b+1)+b = a2+ab+a+b = (a+1)(a+b).

55. Suppose that there are only finitely many primes of the
form 4k + 3, namely q1, q2, . . . , qn, where q1 = 3, q2 = 7,
and so on. Let Q = 4q1q2 · · · qn−1. Note that Q is of the form
4k + 3 (where k = q1q2 · · · qn − 1). If Q is prime, then we
have found a prime of the desired form different from all those
listed. If Q is not prime, then Q has at least one prime factor
not in the list q1, q2, . . . , qn, because the remainder when Q

is divided by qj is qj − 1, and qj − 1 �= 0. Because all odd
primes are either of the form 4k+1 or of the form 4k+3, and
the product of primes of the form 4k + 1 is also of this form
(because (4k+1)(4m+1) = 4(4km+k+m)+1), there must
be a factor of Q of the form 4k + 3 different from the primes
we listed. 57. Given a positive integer x, we show that there
is exactly one positive rational number m/n (in lowest terms)
such that K(m/n)= x. From the prime factorization of x, read
off the m and n such that K(m/n) = x. The primes that occur
to even powers are the primes that occur in the prime factor-
ization of m, with the exponents being half the corresponding
exponents in x; and the primes that occur to odd powers are
the primes that occur in the prime factorization of n, with the
exponents being half of one more than the exponents in x.

Section 4.4

1. 15 · 7 = 105 ≡ 1 (mod 26) 3. 7 5. a) 7 b) 52 c) 34
d) 73 7. Suppose that b and c are both inverses of a modulo
m. Then ba ≡ 1 (mod m) and ca ≡ 1 (mod m). Hence,
ba ≡ ca (mod m). Because gcd(a, m) = 1 it follows by The-
orem 7 in Section 4.3 that b ≡ c (mod m). 9. 8 11. a) 67
b) 88 c) 146 13. 3 and 6 15. Let m′ = m/ gcd(c, m).
Because all the common factors of m and c are divided out of
m to obtain m′, it follows that m′ and c are relatively prime.
Because m divides ac − bc = (a − b)c, it follows that m′
divides (a − b)c. By Lemma 3 in Section 4.3, we see that
m′ divides a − b, so a ≡ b (mod m′). 17. Suppose that
x2 ≡ 1 (mod p). Then p divides x2 − 1 = (x + 1)(x − 1).
By Lemma 2 it follows that p | x + 1 or p | x − 1, so
x ≡ −1 (mod p) or x ≡ 1 (mod p). 19. a) Suppose that
ia ≡ ja (mod p), where 1 ≤ i < j < p. Then p divides
ja− ia = a(j − i). By Theorem 1, because a is not divisible
by p, p divides j − i, which is impossible because j − i is
a positive integer less than p. b) By part (a), because no two
of a, 2a, . . . , (p − 1)a are congruent modulo p, each must be
congruent to a different number from 1 to p−1. It follows that
a ·2a ·3a · · · · · (p−1) ·a ≡ 1 ·2 ·3 · · · · · (p−1) (mod p). It
follows that (p−1)! ·ap−1 ≡ p−1 (mod p). c) By Wilson’s
theorem and part (b), if p does not divide a, it follows that
(−1) · ap−1 ≡ −1 (mod p). Hence, ap−1 ≡ 1 (mod p). d) If
p | a, then p | ap . Hence, ap ≡ a ≡ 0 (mod p). If p does not
divide a, then ap−1 ≡ a (mod p), by part (c). Multiplying
both sides of this congruence by a gives ap ≡ a (mod p).
21. All integers of the form 323+ 330k, where k is an integer
23. All integers of the form 53+ 60k, where k is an integer
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25. procedure chinese(m1, m2, . . . , mn : relatively
prime positive integers ; a1, a2, . . . , an : integers)

m := 1
for k := 1 to n

m := m ·mk

for k := 1 to n

Mk := m/mk

yk := M−1
k mod mk

x := 0
for k := 1 to n

x := x + akMkyk

while x ≥ m

x := x −m

return x {the smallest solution to the system
{x ≡ ak (mod mk), k = 1, 2, . . . , n }}

27. All integers of the form 16 + 252k, where k is an inte-
ger 29. Suppose that p is a prime appearing in the prime
factorization of m1m2 · · ·mn. Because the mis are relatively
prime, p is a factor of exactly one of the mis, say mj . Be-
cause mj divides a − b, it follows that a − b has the fac-
tor p in its prime factorization to a power at least as large
as the power to which it appears in the prime factoriza-
tion of mj . It follows that m1m2 · · · mn divides a − b, so
a ≡ b (mod m1m2 · · ·mn). 31. x ≡ 1 (mod 6) 33. 7
35. ap−2 · a = a · ap−2 = ap−1 ≡ 1 (mod p) 37. a) By
Fermat’s little theorem, we have 210 ≡ 1 (mod 11). Hence,
2340 = (210)34 ≡ 134 = 1 (mod 11). b) Because 32 ≡ 1
(mod 31), it follows that 2340 = (25)68 = 3268 ≡ 168 = 1
(mod 31). c) Because 11 and 31 are relatively prime, and
11 · 31 = 341, it follows by parts (a) and (b) and Exer-
cise 29 that 2340 ≡ 1 (mod 341). 39. a) 3, 4, 8 b) 983
41. Suppose that q is an odd prime with q | 2p−1. By Fermat’s
little theorem, q | 2q−1− 1. From Exercise 37 in Section 4.3,
gcd(2p−1, 2q−1−1) = 2gcd(p,q−1)−1. Because q is a com-
mon divisor of 2p−1 and 2q−1−1, gcd(2p−1, 2q−1−1) > 1.
Hence, gcd(p, q−1) = p, because the only other possibility,
namely, gcd(p, q−1)= 1, gives us gcd(2p−1, 2q−1−1)= 1.
Hence, p | q − 1, and therefore there is a positive integer
m such that q − 1 = mp. Because q is odd, m must be
even, say, m = 2k, and so every prime divisor of 2p − 1
is of the form 2kp + 1. Furthermore, the product of num-
bers of this form is also of this form. Therefore, all divisors
of 2p − 1 are of this form. 43. M11 is not prime; M17

is prime. 45. First, 2047 = 23 · 89 is composite. Write
2047 − 1 = 2046 = 2 · 1023, so s = 1 and t = 1023 in
the definition. Then 21023 = (211)93 = 204893 ≡ 193 = 1
(mod 2047), as desired. 47. We must show that b2820 ≡ 1
(mod 2821) for all b relatively prime to 2821. Note that
2821 = 7 · 13 · 31, and if gcd(b, 2821) = 1, then
gcd(b, 7) = gcd(b, 13) = gcd(b, 31) = 1. Using Fermat’s lit-
tle theorem we find that b6 ≡ 1 (mod 7), b12 ≡ 1 (mod 13),
and b30 ≡ 1 (mod 31). It follows that b2820 ≡ (b6)470 ≡ 1
(mod 7), b2820 ≡ (b12)235 ≡ 1 (mod 13), and b2820 ≡
(b30)94 ≡ 1 (mod 31). By Exercise 29 (or the Chinese re-
mainder theorem) it follows that b2820 ≡ 1 (mod 2821), as
desired. 49. a) If we multiply out this expression, we get

n = 1296m3 + 396m2 + 36m + 1. Clearly 6m | n − 1,
12m | n−1, and 18m | n−1. Therefore, the conditions of Ex-
ercise 48 are met, and we conclude that n is a Carmichael
number. b) Letting m = 51 gives n = 172,947,529.
51. 0 = (0, 0), 1 = (1, 1), 2 = (2, 2), 3 = (0, 3),
4 = (1, 4), 5 = (2, 0), 6 = (0, 1), 7 = (1, 2), 8 = (2, 3),
9 = (0, 4), 10 = (1, 0), 11 = (2, 1), 12 = (0, 2), 13 = (1, 3),
14 = (2, 4) 53. We have m1 = 99, m2 = 98, m3 = 97,
and m4 = 95, so m = 99 · 98 · 97 · 95 = 89,403,930. We
find that M1 = m/m1 = 903,070, M2 = m/m2 = 912,285,
M3 = m/m3 = 921,690, and M4 = m/m4 = 941,094.
Using the Euclidean algorithm, we compute that y1 = 37,
y2 = 33, y3 = 24, and y4 = 4 are inverses of Mk modulo
mk for k = 1, 2, 3, 4, respectively. It follows that the solu-
tion is 65 · 903,070 · 37 + 2 · 912,285 · 33 + 51 ·921,690 ·
24 + 10 · 941,094 · 4 = 3,397,886,480 ≡ 537,140
(mod 89,403,930). 55. log2 5 = 16, log2 6 = 14
57. log3 1 = 0, log3 2 = 14, log3 3 = 1, log3 4 = 12,
log3 5 = 5, log3 6 = 15, log3 7 = 11, log3 8 = 10, log3 9 = 2,
log3 10 = 3, log3 11 = 7, log3 12 = 13, log3 13 = 4,
log3 14 = 9, log3 15 = 6, log3 16 = 8 59. Assume that s is
a solution of x2 ≡ a (mod p). Then because (−s)2 = s2, −s

is also a solution. Furthermore, s �≡ −s (mod p). Otherwise,
p | 2s, which implies that p | s, and this implies, using
the original assumption, that p | a, which is a contradiction.
Furthermore, if s and t are incongruent solutions modulo p,
then because s2 ≡ t2 (mod p), p | s2 − t2. This implies that
p | (s + t)(s − t), and by Lemma 3 in Section 4.3, p | s − t

or p | s + t , so s ≡ t (mod p) or s ≡ −t (mod p). Hence,
there are at most two solutions. 61. The value of

(
a
p

)
de-

pends only on whether a is a quadratic residue modulo p, that
is, whether x2 ≡ a (mod p) has a solution. Because this de-
pends only on the equivalence class of a modulo p, it follows
that

(
a
p

) = (
b
p

)
if a ≡ b (mod p). 63. By Exercise 62,(

a
p

)(
b
p

) = a(p−1)/2b(p−1)/2 = (ab)(p−1)/2 ≡ ( ab
p

)
(mod p).

65. x ≡ 8, 13, 22, or 27 (mod 35) 67. Compute re mod p

for e = 0, 1, 2, . . . , p − 2 until we get the answer a. Worst
case and average case time complexity are O(p log p).

Section 4.5

1. 91, 57, 21, 5 3. a) 7, 19, 7, 7, 18, 0 b) Take the next
available space mod 31. 5. 1, 5, 4, 1, 5, 4, 1, 5, 4, . . .

7. 2, 6, 7, 10, 8, 2, 6, 7, 10, 8, . . . 9. 2357, 5554, 8469,
7239, 4031, 2489, 1951, 8064 11. 2, 1, 1, 1, . . . 13. Only
string (d) 15. 4 17. Correctly, of course 19. a) Not
valid b) Valid c) Valid d) Not valid 21. a) No b) 5 c) 7 d) 8
23. Transposition errors involving the last digit 25. a) Yes
b) No c) Yes d) No 27. Transposition errors will be de-
tected if and only if the transposed digits are an odd num-
ber of positions apart and do not differ by 5. 29. a) Valid
b) Not valid c) Valid d) Valid 31. Yes, as long as the
two digits do not differ by 7 33. a) Not valid b) Valid
c) Valid d) Not valid 35. The given congruence is equiva-
lent to 3d1+ 4d2+ 5d3+ 6d4+ 7d5+ 8d6+ 9d7+ 10d8 ≡ 0
(mod 11). Transposing adjacent digits x and y (with x on the
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left) causes the left-hand side to increase by x − y. Because
x �≡ y (mod 11), the congruence will no longer hold. There-
fore errors of this type are always detected.

Section 4.6

1. a) GR QRW SDVV JR b) QBABG CNFF TB c) QX UXM
AHJJ ZX 3. a) KOHQV MCIF GHSD b) RVBXP TJPZ
NBZX c) DBYNE PHRM FYZA 5. a) SURRENDER
NOW b) BE MY FRIEND c) TIME FOR FUN 7. TO
SLEEP PERCHANCE TO DREAM 9. ANY SUFFI-
CIENTLY ADVANCED TECHNOLOGY IS INDISTIN-
GUISHABLE FROM MAGIC 11. p = 7c + 13 mod 26
13. a = 18, b = 5 15. BEWARE OF MARTIANS
17. Presumably something like an affine cipher
19. HURRICANE 21. The length of the key may well be
the greatest common divisor of the distances between the starts
of the repeated string (or a factor of the gcd). 23. Suppose
we know both n = pq and (p−1)(q−1). To find p and q, first
note that (p−1)(q−1) = pq−p−q+1 = n− (p+q)+1.
From this we can find s = p + q. Because q = s − p,
we have n = p(s − p). Hence, p2 − ps + n = 0. We
now can use the quadratic formula to find p. Once we have
found p, we can find q because q = n/p. 25. 2545 2757
1211 27. SILVER 29. Alice sends 58 mod 23 = 16 to
Bob. Bob sends 55 mod 23 = 20 to Alice. Alice computes
208 mod 23 = 6 and Bob computes 165 mod 23 = 6. The
shared key is 6. 31. 2186 2087 1279 1251 0326 0816 1948
33. Alice can decrypt the first part of Cathy’s message to
learn the key, and Bob can decrypt the second part of Cathy’s
message, which Alice forwarded to him, to learn the key. No
one else besides Cathy can learn the key, because all of these
communications use secure private keys.

Supplementary Exercises

1. The actual number of miles driven is 46518+ 100000k for
some natural number k. 3. 5, 22,−12,−29 5. Because
ac ≡ bc (mod m) there is an integer k such that ac = bc+
km. Hence, a − b = km/c. Because a − b is an integer,
c | km. Letting d = gcd(m, c), write c = de. Because no
factor of e divides m/d, it follows that d | m and e | k. Thus
a − b = (k/e)(m/d), where k/e ∈ Z and m/d ∈ Z. There-
fore a ≡ b (mod m/d). 7. Proof of the contrapositive:
If n is odd, then n = 2k + 1 for some integer k. Therefore
n2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 ≡ 2 (mod 4). But
perfect squares of even numbers are congruent to 0 modulo 4
(because (2m)2 = 4m2), and perfect squares of odd numbers
are congruent to 1 or 3 modulo 4, so n2 + 1 is not a perfect
square. 9. n is divisible by 8 if and only if the binary expan-
sion of n ends with 000. 11. We assume that someone has
chosen a positive integer less than 2n, which we are to guess.
We ask the person to write the number in binary, using leading
0s if necessary to make it n bits long. We then ask “Is the first
bit a 1?”, “Is the second bit a 1?”, “Is the third bit a 1?”, and so

on. After we know the answers to these n questions, we will
know the number, because we will know its binary expansion.
13. (anan−1 . . . a1a0)10 = ∑n

k=0 10kak ≡ ∑n
k=0 ak (mod 9)

because 10k ≡ 1 (mod 9) for every nonnegative integer k.
15. Because for all k ≤ n, when Qn is divided by k the re-
mainder will be 1, it follows that no prime number less than
or equal to n is a factor of Qn. Thus by the fundamental theo-
rem of arithmetic, Qn must have a prime factor greater than n.
17. Takea = 10 andb = 1 in Dirichlet’s theorem. 19. Every
number greater than 11 can be written as either 8+2n or 9+2n

for some n ≥ 2. 21. Assume that every even integer greater
than 2 is the sum of two primes, and let n be an integer greater
than 5. If n is odd, write n = 3 + (n − 3) and decompose
n− 3 = p + q into the sum of two primes; if n is even, then
write n = 2 + (n − 2) and decompose n − 2 = p + q into
the sum of two primes. For the converse, assume that every
integer greater than 5 is the sum of three primes, and let n be
an even integer greater than 2. Write n+ 2 as the sum of three
primes, one of which is necessarily 2, so n+ 2 = 2+ p + q,
whence n = p + q. 23. Recall that a nonconstant poly-
nomial can take on the same value only a finite number of
times. Thus f can take on the values 0 and ±1 only finitely
many times, so if there is not some y such that f (y) is com-
posite, then there must be some x0 such that±f (x0) is prime,
say p. Look at f (x0 + kp). When we plug x0 + kp in for x

in the polynomial and multiply it out, every term will contain
a factor of p except for the terms that form f (x0). Therefore
f (x0+kp) = f (x0)+mp = (m±1)p for some integer m. As
k varies, this value can be 0, p, or−p only finitely many times;
therefore it must be a composite number for some values of k.
25. 1 27. 1 29. If not, then suppose that q1, q2, . . . , qn are
all the primes of the form 6k + 5. Let Q = 6q1q2 · · · qn − 1.
Note that Q is of the form 6k+ 5, where k = q1q2 · · · qn− 1.
Let Q = p1p2 · · ·pt be the prime factorization of Q. No pi is
2, 3, or any qj , because the remainder when Q is divided by 2
is 1, by 3 is 2, and by qj is qj −1. All odd primes other than 3
are of the form 6k+ 1 or 6k+ 5, and the product of primes of
the form 6k + 1 is also of this form. Therefore at least one of
the pi’s must be of the form 6k+5, a contradiction. 31. The
product of numbers of the form 4k + 1 is of the form 4k + 1,
but numbers of this form might have numbers not of this form
as their only prime factors. For example, 49 = 4 · 12+ 1, but
the prime factorization of 49 is 7 · 7 = (4 · 1+ 3)(4 · 1+ 3).
33. a) Not mutually relatively prime b) Mutually relatively
prime c) Mutually relatively prime d) Mutually relatively
prime 35 1 37. x ≡ 28 (mod 30) 39. By the Chinese
remainder theorem, it suffices to show that n9 − n ≡ 0
(mod 2), n9 − n ≡ 0 (mod 3), and n9 − n ≡ 0 (mod 5).
Each in turn follows from applying Fermat’s little theorem.
41. By Fermat’s little theorem, pq−1 ≡ 1 (mod q) and clearly
qp−1 ≡ 0 (mod q). Therefore pq−1 + qp−1 ≡ 1 + 0 = 1
(mod q). Similarly, pq−1 + qp−1 ≡ 1 (mod p). It follows
from the Chinese remainder theorem that pq−1 + qp−1 ≡ 1
(mod pq). 43. If ai is changed from x to y, then the change
in the left-hand side of the congruence is either y − x or
3(y−x), modulo 10, neither of which can be 0 because 1 and
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3 are relatively prime to 10. Therefore the sum can no longer
be 0 modulo 10. 45. Working modulo 10, solve for d9.
The check digit for 11100002 is 5. 47. PLEASE SEND
MONEY 49. a) QAL HUVEM AT WVESGB b) QXB
EVZZL ZEVZZRFS

CHAPTER 5

Section 5.1

1. Let P(n) be the statement that the train stops at sta-
tion n. Basis step: We are told that P(1) is true. Induc-
tive step: We are told that P(n) implies P(n + 1) for each
n ≥ 1. Therefore by the principle of mathematical induc-
tion, P(n) is true for all positive integers n. 3. a) 12 =
1 · 2 · 3/6 b) Both sides of P(1) shown in part (a) equal 1.
c) 12 + 22 + · · · + k2 = k(k + 1)(2k + 1)/6 d) For each
k ≥ 1 that P(k) implies P(k + 1); in other words, that as-
suming the inductive hypothesis [see part (c)] we can show
12 + 22 + · · · + k2 + (k + 1)2 = (k + 1)(k + 2)(2k + 3)/6
e) (12 + 22 + · · · + k2) + (k + 1)2 = [k(k + 1)(2k +
1)/6] + (k + 1)2 = [(k + 1)/6][k(2k + 1) + 6(k +
1)] = [(k + 1)/6](2k2 + 7k + 6) = [(k + 1)/6](k +
2)(2k+3) = (k+1)(k+2)(2k+3)/6 f) We have completed
both the basis step and the inductive step, so by the principle
of mathematical induction, the statement is true for every pos-
itive integer n. 5. Let P(n) be “12+32+· · ·+ (2n+1)2 =
(n+ 1)(2n+ 1)(2n+ 3)/3.” Basis step: P(0) is true because
12 = 1 = (0+1)(2·0+1)(2·0+3)/3. Inductive step:Assume
that P(k) is true. Then 12+32+· · ·+ (2k+1)2+[2(k+1)+
1]2 = (k+1)(2k+1)(2k+3)/3+ (2k+3)2 = (2k+3)[(k+
1)(2k+1)/3+(2k+3)] = (2k+3)(2k2+9k+10)/3 = (2k+
3)(2k+5)(k+2)/3= [(k+1)+1][2(k+1)+1][2(k+1)+3]/3.
7. Let P(n) be “

∑n
j=0 3 · 5j = 3(5n+1 − 1)/4.” Basis step:

P(0) is true because
∑0

j=0 3 · 5j = 3 = 3(51 − 1)/4.

Inductive step: Assume that
∑k

j=0 3 · 5j = 3(5k+1 − 1)/4.

Then
∑k+1

j=0 3 · 5j = (
∑k

j=0 3 · 5j ) + 3 · 5k+1 = 3(5k+1 −
1)/4+ 3 · 5k+1 = 3(5k+1+ 4 · 5k+1− 1)/4 = 3(5k+2− 1)/4.
9. a) 2+4+6+· · ·+2n= n(n+1) b) Basis step: 2= 1·(1+1)

is true. Inductive step: Assume that 2 + 4 + 6 + · · · + 2k =
k(k + 1). Then (2 + 4 + 6 + · · · + 2k) + 2(k + 1) =
k(k+1)+2(k+1) = (k+1)(k+2). 11. a)

∑n
j=1 1/2j =

(2n − 1)/2n b) Basis step: P(1) is true because 1
2 = (21−

1)/21. Inductive step:Assume that
∑k

j=1 1/2j = (2k−1)/2k .

Then
∑k+1

j=1
1

2j = (
∑k

j=1
1

2j ) + 1
2k+1 = 2k−1

2k + 1
2k+1 =

2k+1−2+1
2k+1 = 2k+1−1

2k+1 . 13. Let P(n) be “12 − 22 + 32 −
· · · + (−1)n−1n2 = (−1)n−1n(n + 1)/2.” Basis step: P(1)

is true because 12 = 1 = (−1)012. Inductive step: Assume
that P(k) is true. Then 12 − 22 + 32 − · · · + (−1)k−1k2 +
(−1)k(k + 1)2 = (−1)k−1k(k + 1)/2 + (−1)k(k + 1)2 =
(−1)k(k+ 1)[−k/2+ (k+ 1)] = (−1)k(k+ 1)[(k/2)+ 1] =
(−1)k(k+1)(k+2)/2. 15. Let P(n) be “1 ·2+2 ·3+· · ·+
n(n+1)= n(n+1)(n+2)/3.” Basis step: P(1) is true because

1·2= 2= 1(1+1)(1+2)/3. Inductive step:Assume that P(k)

is true. Then 1·2+2·3+· · ·+k(k+1)+(k+1)(k+2)= [k(k+
1)(k+ 2)/3]+ (k+ 1)(k+ 2) = (k+ 1)(k+ 2)[(k/3)+ 1] =
(k+1)(k+2)(k+3)/3. 17. Let P(n) be the statement that
14+24+34+· · · + n4 = n(n+1)(2n+1)(3n2+3n−1)/30.
P(1) is true because 1 · 2 · 3 · 5/30 = 1. Assume that P(k)

is true. Then (14 + 24 + 34 + · · · + k4) + (k + 1)4 =
k(k + 1)(2k + 1)(3k2 + 3k − 1)/30 + (k + 1)4 = [(k +
1)/30][k(2k + 1)(3k2 + 3k − 1) + 30(k + 1)3] = [(k +
1)/30](6k4 + 39k3 + 91k2 + 89k + 30) = [(k + 1)/30](k +
2)(2k+ 3)[3(k+ 1)2+ 3(k+ 1)− 1]. This demonstrates that
P(k + 1) is true. 19. a) 1 + 1

4 < 2 − 1
2 b) This is true

because 5/4 is less than 6/4. c) 1+ 1
4 + · · · + 1

k2 < 2 − 1
k

d) For each k ≥ 2 that P(k) implies P(k+1); in other words,
we want to show that assuming the inductive hypothesis [see
part (c)] we can show 1+ 1

4 + · · · + 1
k2 + 1

(k+1)2 < 2− 1
k+1

e) 1+ 1
4+ · · · + 1

k2 + 1
(k+1)2 < 2 − 1

k
+ 1

(k+1)2 =
2−[ 1

k
− 1

(k+1)2

] = 2−[ k2+2k+1−k
k(k+1)2

] = 2− k2+k
k(k+1)2 − 1

k(k+1)2 =
2 − 1

k+1 − 1
k(k+1)2 < 2 − 1

k+1 f) We have completed both
the basis step and the inductive step, so by the principle of
mathematical induction, the statement is true for every inte-
ger n greater than 1. 21. Let P(n) be “2n > n2.” Basis
step: P(5) is true because 25 = 32 > 25 = 52. Induc-
tive step: Assume that P(k) is true, that is, 2k > k2. Then
2k+1 = 2 · 2k > k2+ k2 > k2+ 4k ≥ k2+ 2k+ 1 = (k+ 1)2

because k > 4. 23. By inspection we find that the inequality
2n+ 3 ≤ 2n does not hold for n = 0, 1, 2, 3. Let P(n) be the
proposition that this inequality holds for the positive integer n.
P(4), the basis case, is true because 2 ·4+3 = 11 ≤ 16 = 24.
For the inductive step assume that P(k) is true. Then, by the in-
ductive hypothesis, 2(k+1)+3= (2k+3)+2 < 2k+2. But be-
cause k ≥ 1, 2k+2 ≤ 2k+2k = 2k+1. This shows that P(k+1)

is true. 25. Let P(n) be “1 + nh ≤ (1 + h)n, h > −1.”
Basis step: P(0) is true because 1+0 ·h = 1 ≤ 1 = (1+h)0.
Inductive step: Assume 1 + kh ≤ (1 + h)k . Then because
(1+h) > 0, (1+h)k+1 = (1+h)(1+h)k ≥ (1+h)(1+kh) =
1 + (k + 1)h + kh2 ≥ 1 + (k + 1)h. 27. Let P(n) be
“1/
√

1 + 1/
√

2 + 1/
√

3 + · · · + 1/
√

n > 2
(√

n+ 1− 1
)
.”

Basis step: P(1) is true because 1 > 2
(√

2− 1
)
. Induc-

tive step: Assume that P(k) is true. Then 1 + 1/
√

2 + · · · +
1/
√

k + 1/
√

k + 1 > 2
(√

k + 1− 1
) + 1/

√
k + 1. If we

show that 2
(√

k + 1− 1
) + 1/

√
k + 1 > 2

(√
k + 2− 1

)
,

it follows that P(k + 1) is true. This inequality is equiv-
alent to 2

(√
k + 2−√k + 1

)
< 1/

√
k + 1, which is

equivalent to 2
(√

k + 2−√k + 1
) (√

k + 2+ √
k + 1

)
<√

k + 1/
√

k + 1 + √
k + 2/

√
k + 1. This is equivalent to

2 < 1 + √k + 2/
√

k + 1, which is clearly true. 29. Let
P(n) be “H2n ≤ 1 + n.” Basis step: P(0) is true be-
cause H20 = H1 = 1 ≤ 1 + 0. Inductive step: Assume
that H2k ≤ 1 + k. Then H2k+1 = H2k+∑2k+1

j=2k+1
1
j
≤

1 + k + 2k
(

1
2k+1

)
< 1 + k + 1 = 1 + (k + 1). 31. Basis

step: 12 + 1 = 2 is divisible by 2. Inductive step: Assume
the inductive hypothesis, that k2 + k is divisible by 2. Then
(k+1)2+(k+1) = k2+2k+1+k+1 = (k2+k)+2(k+1),
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the sum of a multiple of 2 (by the inductive hypothesis) and a
multiple of 2 (by definition), hence, divisible by 2. 33. Let
P(n) be “n5 − n is divisible by 5.” Basis step: P(0) is true
because 05 − 0 = 0 is divisible by 5. Inductive step: As-
sume that P(k) is true, that is, k5 − 5 is divisible by 5. Then
(k+1)5−(k+1)= (k5+5k4+10k3+10k2+5k+1)−(k+1)=
(k5 − k) + 5(k4 + 2k3 + 2k2 + k) is also divisible by 5,
because both terms in this sum are divisible by 5. 35. Let
P(n) be the proposition that (2n − 1)2 − 1 is divisible by
8. The basis case P(1) is true because 8 | 0. Now as-
sume that P(k) is true. Because [(2(k + 1) − 1]2 − 1 =
[(2k− 1)2 − 1] + 8k, P (k+ 1) is true because both terms on
the right-hand side are divisible by 8. This shows that P(n)

is true for all positive integers n, so m2 − 1 is divisible by
8 whenever m is an odd positive integer. 37. Basis step:
111+1+122·1−1 = 121+12 = 133 Inductive step:Assume the
inductive hypothesis, that 11n+1+122n−1 is divisible by 133.
Then 11(n+1)+1 + 122(n+1)−1 = 11 · 11n+1 + 144 · 122n−1 =
11 · 11n+1 + (11+ 133) · 122n−1 = 11(11n+1 + 122n−1)+
133 · 122n−1. The expression in parentheses is divisible by
133 by the inductive hypothesis, and obviously the second
term is divisible by 133, so the entire quantity is divisible by
133, as desired. 39. Basis step: A1 ⊆ B1 tautologically im-
plies that

⋂1
j=1 Aj ⊆⋂1

j=1 Bj . Inductive step: Assume the
inductive hypothesis that if Aj ⊆ Bj for j = 1, 2, . . . , k,
then

⋂k
j=1 Aj ⊆⋂k

j=1 Bj . We want to show that if Aj ⊆ Bj

for j = 1, 2, . . . , k + 1, then
⋂k+1

j=1 Aj ⊆⋂k+1
j=1 Bj . Let x

be an arbitrary element of
⋂k+1

j=1 Aj =
(⋂k

j=1 Aj

)
∩ Ak+1.

Because x ∈ ⋂k
j=1 Aj , we know by the inductive hypothe-

sis that x ∈ ⋂k
j=1 Bj ; because x ∈ Ak+1, we know from

the given fact that Ak+1 ⊆ Bk+1 that x ∈ Bk+1. There-
fore, x ∈

(⋂k
j=1 Bj

)
∩Bk+1 =⋂k+1

j=1 Bj . 41. Let P(n) be
“(A1∪A2∪· · ·∪An)∩B = (A1∩B)∪(A2∩B)∪· · ·∪(An ∩
B).” Basis step: P(1) is trivially true. Inductive step: Assume
that P(k) is true. Then (A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1) ∩ B =
[(A1∪A2∪· · ·∪Ak)∪Ak+1]∩B = [(A1∪A2∪· · ·∪Ak)∩
B] ∪ (Ak+1 ∩ B) = [(A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ∪ (Ak ∩
B)] ∪ (Ak+1 ∩ B) = (A1 ∩ B) ∪ (A2 ∩ B) ∪· · ·∪ (Ak ∩
B)∪ (Ak+1 ∩B). 43. Let P(n) be “

⋃n
k=1 Ak =⋂n

k=1 Ak .”
Basis step: P(1) is trivially true. Inductive step: Assume that

P(k) is true. Then
⋃k+1

j=1 Aj =
(⋃k

j=1 Aj

)
∪ Ak+1 =

(⋃k
j=1 Aj

)
∩ Ak+1 =

(⋂k
j=1 Aj

)
∩ Ak+1 = ⋂k+1

j=1 Aj .

45. Let P(n) be the statement that a set with n elements has
n(n− 1)/2 two-element subsets. P(2), the basis case, is true,
because a set with two elements has one subset with two
elements—namely, itself—and 2(2 − 1)/2 = 1. Now as-
sume that P(k) is true. Let S be a set with k + 1 elements.
Choose an element a in S and let T = S−{a}. A two-element
subset of S either contains a or does not. Those subsets not
containing a are the subsets of T with two elements; by the
inductive hypothesis there are k(k−1)/2 of these. There are k

subsets of S with two elements that contain a, because such a
subset contains a and one of the k elements in T . Hence, there
are k(k−1)/2+k = (k+1)k/2 two-element subsets of S. This

completes the inductive proof. 47. Reorder the locations if
necessary so that x1 ≤ x2 ≤ x3 ≤ · · · ≤ xd . Place the first
tower at position t1 = x1+1. Assume tower k has been placed
at position tk . Then place tower k+1 at position tk+1 = x+1,
where x is the smallest xi greater than tk + 1. 49. The two
sets do not overlap if n+ 1 = 2. In fact, the conditional state-
ment P(1)→ P(2) is false. 51. The mistake is in applying
the inductive hypothesis to look at max(x−1, y−1), because
even though x and y are positive integers, x − 1 and y − 1
need not be (one or both could be 0). 53. For the basis step
(n = 2) the first person cuts the cake into two portions that she
thinks are each 1/2 of the cake, and the second person chooses
the portion he thinks is at least 1/2 of the cake (at least one of
the pieces must satisfy that condition). For the inductive step,
suppose there are k + 1 people. By the inductive hypothesis,
we can suppose that the first k people have divided the cake
among themselves so that each person is satisfied that he got
at least a fraction 1/k of the cake. Each of them now cuts his
or her piece into k+1 pieces of equal size. The last person gets
to choose one piece from each of the first k people’s portions.
After this is done, each of the first k people is satisfied that
she still has (1/k)(k/(k + 1)) = 1/(k + 1) of the cake. To
see that the last person is satisfied, suppose that he thought
that the ith person (1 ≤ i ≤ k) had a portion pi of the
cake, where

∑k
i=1 pi = 1. By choosing what he thinks is the

largest piece from each person, he is satisfied that he has at
least

∑k
i=1 pi/(k+1) = (1/(k+1))

∑k
i=1 pi = 1/(k+1) of

the cake. 55. We use the notation (i, j) to mean the square
in row i and column j and use induction on i+ j to show that
every square can be reached by the knight. Basis step: There
are six base cases, for the cases when i + j ≤ 2. The
knight is already at (0, 0) to start, so the empty sequence of
moves reaches that square. To reach (1, 0), the knight moves
(0, 0)→ (2, 1)→ (0, 2)→ (1, 0). Similarly, to reach (0, 1),
the knight moves (0, 0) → (1, 2) → (2, 0) → (0, 1). Note
that the knight has reached (2, 0) and (0, 2) in the process.
For the last basis step there is (0, 0) → (1, 2) → (2, 0) →
(0, 1) → (2, 2) → (0, 3) → (1, 1). Inductive step: Assume
the inductive hypothesis, that the knight can reach any square
(i, j) for which i + j = k, where k is an integer greater
than 1. We must show how the knight can reach each square
(i, j) when i + j = k + 1. Because k + 1 ≥ 3, at least one
of i and j is at least 2. If i ≥ 2, then by the inductive hypoth-
esis, there is a sequence of moves ending at (i − 2, j + 1),
because i − 2 + j + 1 = i + j − 1 = k; from there
it is just one step to (i, j); similarly, if j ≥ 2. 57. Basis
step: The base cases n = 0 and n = 1 are true because
the derivative of x0 is 0 and the derivative of x1 = x is 1.
Inductive step: Using the product rule, the inductive hypoth-
esis, and the basis step shows that d

dx
xk+1 = d

dx
(x · xk) =

x · d
dx

xk+xk d
dx

x = x ·kxk−1+xk ·1 = kxk+xk = (k+1)xk .
59. Basis step: For k = 0, 1 ≡ 1 (mod m). Inductive step:
Suppose that a ≡ b (mod m) and ak ≡ bk (mod m); we
must show that ak+1 ≡ bk+1 (mod m). By Theorem 5 from
Section 4.1, a · ak ≡ b · bk (mod m), which by defini-
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tion says that ak+1 ≡ bk+1 (mod m). 61. Let P(n) be
“[(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn−1 → pn)] →
[(p1 ∧ · · · ∧ pn−1)→ pn].” Basis step: P(2) is true because
(p1 → p2) → (p1 → p2) is a tautology. Inductive step:
Assume P(k) is true. To show [(p1 → p2) ∧ · · · ∧ (pk−1 →
pk) ∧ (pk → pk+1)] → [(p1 ∧ · · · ∧ pk−1 ∧ pk) → pk+1]
is a tautology, assume that the hypothesis of this conditional
statement is true. Because both the hypothesis and P(k) are
true, it follows that (p1 ∧ · · · ∧ pk−1) → pk is true. Be-
cause this is true, and because pk → pk+1 is true (it is part
of the assumption) it follows by hypothetical syllogism that
(p1 ∧ · · · ∧ pk−1) → pk+1 is true. The weaker statement
(p1 ∧ · · · ∧ pk−1 ∧ pk) → pk+1 follows from this. 63. We
will first prove the result when n is a power of 2, that is, if
n = 2k , k = 1, 2, . . . . Let P(k) be the statement A ≥ G,
where A and G are the arithmetic and geometric means, re-
spectively, of a set of n = 2k positive real numbers. Basis
step: k = 1 and n = 21 = 2. Note that (

√
a1 −√a2)

2 ≥ 0.
Expanding this shows that a1 − 2

√
a1a2 + a2 ≥ 0, that is,

(a1+ a2)/2 ≥ (a1a2)
1/2. Inductive step: Assume that P(k) is

true, with n = 2k . We will show that P(k+1) is true. We have
2k+1 = 2n. Now (a1 + a2 + · · · + a2n)/(2n) = [(a1 + a2 +
· · · + an)/n+ (an+1 + an+2 + · · · + a2n)/n]/2 and similarly
(a1a2 · · · a2n)

1/(2n) = [(a1 · · · an)
1/n(an+1 · · · a2n)

1/n]1/2. To
simplify the notation, let A(x, y, . . . ) and G(x, y, . . . ) denote
the arithmetic mean and geometric mean of x, y, . . . , respec-
tively. Also, if x ≤ x′, y ≤ y′, and so on, then A(x, y, . . . ) ≤
A(x′, y′, . . . ) and G(x, y, . . . ) ≤ G(x′, y′, . . . ). Hence,
A(a1, . . . , a2n) = A(A(a1, . . . , an), A(an+1, . . . , a2n)) ≥
A(G(a1, . . . , an), G(an+1, . . . , a2n)) ≥ G(G(a1, . . . , an),
G(an+1, . . . , a2n)) = G(a1, . . . , a2n). This finishes
the proof for powers of 2. Now if n is not a power
of 2, let m be the next higher power of 2, and let
an+1, . . . , am all equal A(a1, . . . , an) = a. Then we
have [(a1a2 · · · an)a

m−n]1/m ≤ A(a1, . . . , am), because m is
a power of 2. Because A(a1, . . . , am) = a, it follows
that (a1 · · · an)

1/ma1−n/m ≤ an/m. Raising both sides to the
(m/n)th power gives G(a1, . . . , an) ≤ A(a1, . . . , an).
65. Basis step: For n = 1, the left-hand side is just 1

1 , which
is 1. For n = 2, there are three nonempty subsets {1}, {2},
and {1, 2}, so the left-hand side is 1

1 + 1
2 + 1

1·2 = 2. Inductive
step: Assume that the statement is true for k. The set of the
first k + 1 positive integers has many nonempty subsets, but
they fall into three categories: a nonempty subset of the first
k positive integers together with k + 1, a nonempty subset of
the first k positive integers, or just {k + 1}. By the inductive
hypothesis, the sum of the first category is k. For the second
category, we can factor out 1/(k + 1) from each term of the
sum and what remains is just k by the inductive hypothesis,
so this part of the sum is k/(k + 1). Finally, the third cate-
gory simply yields 1/(k + 1). Hence, the entire summation
is k + k/(k + 1) + 1/(k + 1) = k + 1. 67. Basis step:
If A1 ⊆ A2, then A1 satisfies the condition of being a sub-
set of each set in the collection; otherwise A2 ⊆ A1, so A2
satisfies the condition. Inductive step: Assume the inductive
hypothesis, that the conditional statement is true for k sets,

and suppose we are given k + 1 sets that satisfy the given
conditions. By the inductive hypothesis, there must be a set
Ai for some i ≤ k such that Ai ⊆ Aj for 1 ≤ j ≤ k.
If Ai ⊆ Ak+1, then we are done. Otherwise, we know that
Ak+1 ⊆ Ai , and this tells us that Ak+1 satisfies the condition
of being a subset of Aj for 1 ≤ j ≤ k + 1. 69. G(1) = 0,
G(2) = 1, G(3) = 3, G(4) = 4 71. To show that 2n − 4
calls are sufficient to exchange all the gossip, select persons 1,
2, 3, and 4 to be the central committee. Every person outside
the central committee calls one person on the central commit-
tee. At this point the central committee members as a group
know all the scandals. They then exchange information among
themselves by making the calls 1-2, 3-4, 1-3, and 2-4 in that
order. At this point, every central committee member knows
all the scandals. Finally, again every person outside the central
committee calls one person on the central committee, at which
point everyone knows all the scandals. [The total number of
calls is (n− 4)+ 4+ (n− 4) = 2n− 4.] That this cannot be
done with fewer than 2n−4 calls is much harder to prove; see
Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L.
Liestman, “A survey of gossiping and broadcasting in com-
munication networks,” Networks 18 (1988), no. 4, 319–349,
for details. 73. We prove this by mathematical induction.
The basis step (n = 2) is true tautologically. For n = 3,
suppose that the intervals are (a, b), (c, d), and (e, f ), where
without loss of generality we can assume that a ≤ c ≤ e.
Because (a, b)∩(e, f ) �= ∅, we must have e < b; for a similar
reason, e < d. It follows that the number halfway between e

and the smaller of b and d is common to all three intervals.
Now for the inductive step, assume that whenever we have k

intervals that have pairwise nonempty intersections then there
is a point common to all the intervals, and suppose that we are
given intervals I1, I2, . . . , Ik+1 that have pairwise nonempty
intersections. For each i from 1 to k, let Ji = Ii ∩ Ik+1. We
claim that the collection J1, J2, . . . , Jk satisfies the inductive
hypothesis, that is, that Ji1 ∩ Ji2 �= ∅ for each choice of sub-
scripts i1 and i2. This follows from the n = 3 case proved
above, using the sets Ii1 , Ii2 , and Ik+1. We can now invoke the
inductive hypothesis to conclude that there is a number com-
mon to all of the sets Ji for i = 1, 2, . . . , k, which perforce
is in the intersection of all the sets Ii for i = 1, 2, . . . , k + 1.
75. Pair up the people. Have the people stand at mutually dis-
tinct small distances from their partners but far away from
everyone else. Then each person throws a pie at his or her
partner, so everyone gets hit.

77.

79. Let P(n) be the statement that every 2n×2n×2n checker-
board with a 1× 1× 1 cube removed can be covered by tiles
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that are 2× 2× 2 cubes each with a 1× 1× 1 cube removed.
The basis step, P(1), holds because one tile coincides with the
solid to be tiled. Now assume that P(k) holds. Now consider a
2k+1×2k+1×2k+1 cube with a 1×1×1 cube removed. Split
this object into eight pieces using planes parallel to its faces
and running through its center. The missing 1 × 1 × 1 piece
occurs in one of these eight pieces. Now position one tile with
its center at the center of the large object so that the missing
1 × 1 × 1 cube lies in the octant in which the large object is
missing a 1×1×1 cube. This creates eight 2k×2k×2k cubes,
each missing a 1 × 1 × 1 cube. By the inductive hypothesis
we can fill each of these eight objects with tiles. Putting these
tilings together produces the desired tiling.
81.

83. Let Q(n) be P(n+b−1). The statement that P(n) is true
for n = b, b + 1, b + 2, . . . is the same as the statement that
Q(m) is true for all positive integers m. We are given that P(b)

is true [i.e., that Q(1) is true], and that P(k) → P(k + 1)

for all k ≥ b [i.e., that Q(m) → Q(m + 1) for all posi-
tive integers m]. Therefore, by the principle of mathematical
induction, Q(m) is true for all positive integers m.

Section 5.2

1. Basis step: We are told we can run one mile, so P(1) is
true. Inductive step: Assume the inductive hypothesis, that we
can run any number of miles from 1 to k. We must show that
we can run k + 1 miles. If k = 1, then we are already told
that we can run two miles. If k > 1, then the inductive hy-
pothesis tells us that we can run k − 1 miles, so we can run
(k − 1) + 2 = k + 1 miles. 3. a) P(8) is true, because we
can form 8 cents of postage with one 3-cent stamp and one
5-cent stamp. P(9) is true, because we can form 9 cents of
postage with three 3-cent stamps. P(10) is true, because we
can form 10 cents of postage with two 5-cent stamps. b) The
statement that using just 3-cent and 5-cent stamps we can form
j cents postage for all j with 8 ≤ j ≤ k, where we assume
that k ≥ 10 c) Assuming the inductive hypothesis, we can
form k + 1 cents postage using just 3-cent and 5-cent stamps
d) Because k ≥ 10, we know that P(k−2) is true, that is, that
we can form k−2 cents of postage. Put one more 3-cent stamp
on the envelope, and we have formed k + 1 cents of postage.
e) We have completed both the basis step and the inductive
step, so by the principle of strong induction, the statement is
true for every integer n greater than or equal to 8. 5. a) 4,
8, 11, 12, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, and all values
greater than or equal to 30 b) Let P(n) be the statement that

we can form n cents of postage using just 4-cent and 11-cent
stamps. We want to prove that P(n) is true for all n ≥ 30.
For the basis step, 30 = 11 + 11 + 4 + 4. Assume that
we can form k cents of postage (the inductive hypothesis);
we will show how to form k + 1 cents of postage. If the k

cents included an 11-cent stamp, then replace it by three 4-
cent stamps. Otherwise, k cents was formed from just 4-cent
stamps. Because k ≥ 30, there must be at least eight 4-cent
stamps involved. Replace eight 4-cent stamps by three 11-cent
stamps, and we have formed k + 1 cents in postage. c) P(n)

is the same as in part (b). To prove that P(n) is true for all
n ≥ 30, we check for the basis step that 30 = 11+11+4+4,
31 = 11+4+4+4+4+4, 32 = 4+4+4+4+4+4+4+4,
and 33 = 11+ 11+ 11. For the inductive step, assume the in-
ductive hypothesis, that P(j) is true for all j with 30 ≤ j ≤ k,
where k is an arbitrary integer greater than or equal to 33. We
want to show that P(k + 1) is true. Because k − 3 ≥ 30, we
know that P(k − 3) is true, that is, that we can form k − 3
cents of postage. Put one more 4-cent stamp on the envelope,
and we have formed k+ 1 cents of postage. In this proof, our
inductive hypothesis was that P(j) was true for all values of
j between 30 and k inclusive, rather than just that P(30) was
true. 7. We can form all amounts except $1 and $3. Let P(n)

be the statement that we can form n dollars using just 2-dollar
and 5-dollar bills. We want to prove that P(n) is true for all
n ≥ 5. (It is clear that $1 and $3 cannot be formed and that
$2 and $4 can be formed.) For the basis step, note that 5 = 5
and 6 = 2+2+2. Assume the inductive hypothesis, that P(j)

is true for all j with 5 ≤ j ≤ k, where k is an arbitrary integer
greater than or equal to 6. We want to show that P(k + 1) is
true. Because k−1 ≥ 5, we know that P(k−1) is true, that is,
that we can form k− 1 dollars. Add another 2-dollar bill, and
we have formed k+ 1 dollars. 9. Let P(n) be the statement
that there is no positive integer b such that

√
2 = n/b. Basis

step: P(1) is true because
√

2 > 1 ≥ 1/b for all positive
integers b. Inductive step: Assume that P(j) is true for all
j ≤ k, where k is an arbitrary positive integer; we prove that
P(k+1) is true by contradiction.Assume that

√
2 = (k+1)/b

for some positive integer b. Then 2b2 = (k+ 1)2, so (k+ 1)2

is even, and hence, k + 1 is even. So write k + 1 = 2t for
some positive integer t , whence 2b2 = 4t2 and b2 = 2t2. By
the same reasoning as before, b is even, so b = 2s for some
positive integer s. Then

√
2 = (k + 1)/b = (2t)/(2s) = t/s.

But t ≤ k, so this contradicts the inductive hypothesis, and
our proof of the inductive step is complete. 11. Basis step:
There are four base cases. If n = 1 = 4 ·0+1, then clearly the
second player wins. If there are two, three, or four matches
(n = 4·0+2, n = 4·0+3, or n = 4·1), then the first player can
win by removing all but one match. Inductive step: Assume
the strong inductive hypothesis, that in games with k or fewer
matches, the first player can win if k ≡ 0, 2, or 3 (mod 4) and
the second player can win if k ≡ 1 (mod 4). Suppose we have
a game with k+1 matches, with k ≥ 4. If k+1≡ 0 (mod 4),
then the first player can remove three matches, leaving k − 2
matches for the other player. Because k− 2 ≡ 1 (mod 4), by
the inductive hypothesis, this is a game that the second player
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at that point (who is the first player in our game) can win. Sim-
ilarly, if k + 1 ≡ 2 (mod 4), then the first player can remove
one match; and if k + 1 ≡ 3 (mod 4), then the first player
can remove two matches. Finally, if k+ 1 ≡ 1 (mod 4), then
the first player must leave k, k − 1, or k − 2 matches for the
other player. Because k ≡ 0 (mod 4), k − 1 ≡ 3 (mod 4),
and k − 2 ≡ 2 (mod 4), by the inductive hypothesis, this is
a game that the first player at that point (who is the second
player in our game) can win. 13. Let P(n) be the statement
that exactly n − 1 moves are required to assemble a puzzle
with n pieces. Now P(1) is trivially true. Assume that P(j)

is true for all j ≤ k, and consider a puzzle with k + 1 pieces.
The final move must be the joining of two blocks, of size j

and k + 1 − j for some integer j with 1 ≤ j ≤ k. By the
inductive hypothesis, it required j − 1 moves to construct the
one block, and k+ 1− j − 1 = k− j moves to construct the
other. Therefore, 1+(j−1)+(k−j) = k moves are required
in all, so P(k+ 1) is true. 15. Let the Chomp board have n

rows and n columns. We claim that the first player can win the
game by making the first move to leave just the top row and
leftmost column. Let P(n) be the statement that if a player
has presented his opponent with a Chomp configuration con-
sisting of just n cookies in the top row and n cookies in the
leftmost column, then he can win the game. We will prove
∀nP (n) by strong induction. We know that P(1) is true, be-
cause the opponent is forced to take the poisoned cookie at
his first turn. Fix k ≥ 1 and assume that P(j) is true for all
j ≤ k. We claim that P(k + 1) is true. It is the opponent’s
turn to move. If she picks the poisoned cookie, then the game
is over and she loses. Otherwise, assume she picks the cookie
in the top row in column j , or the cookie in the left column in
row j , for some j with 2 ≤ j ≤ k + 1. The first player now
picks the cookie in the left column in row j , or the cookie in
the top row in column j , respectively. This leaves the position
covered by P(j −1) for his opponent, so by the inductive hy-
pothesis, he can win. 17. Let P(n) be the statement that if a
simple polygon with n sides is triangulated, then at least two
of the triangles in the triangulation have two sides that border
the exterior of the polygon. We will prove ∀n ≥ 4 P(n). The
statement is clearly true for n = 4, because there is only one
diagonal, leaving two triangles with the desired property. Fix
k ≥ 4 and assume that P(j) is true for all j with 4 ≤ j ≤ k.
Consider a polygon with k + 1 sides, and some triangulation
of it. Pick one of the diagonals in this triangulation. First sup-
pose that this diagonal divides the polygon into one triangle
and one polygon with k sides. Then the triangle has two sides
that border the exterior. Furthermore, the k-gon has, by the
inductive hypothesis, two triangles that have two sides that
border the exterior of that k-gon, and only one of these trian-
gles can fail to be a triangle that has two sides that border the
exterior of the original polygon. The only other case is that
this diagonal divides the polygon into two polygons with j

sides and k + 3 − j sides for some j with 4 ≤ j ≤ k − 1.
By the inductive hypothesis, each of these two polygons has
two triangles that have two sides that border their exterior, and
in each case only one of these triangles can fail to be a trian-

gle that has two sides that border the exterior of the original
polygon. 19. Let P(n) be the statement that the area of a
simple polygon with n sides and vertices all at lattice points
is given by I (P ) + B(P )/2 − 1. We will prove P(n) for all
n ≥ 3. We begin with an additivity lemma: If P is a simple
polygon with all vertices at lattice points, divided into poly-
gons P1 and P2 by a diagonal, then I (P ) + B(P )/2 − 1 =
[I (P1)+ B(P1)/2 − 1] + [I (P2)+ B(P2)/2 − 1]. To prove
this, suppose there are k lattice points on the diagonal, not
counting its endpoints. Then I (P ) = I (P1)+ I (P2)+ k and
B(P ) = B(P1) + B(P2) − 2k − 2; and the result follows
by simple algebra. What this says in particular is that if Pick’s
formula gives the correct area for P1 and P2, then it must give
the correct formula for P , whose area is the sum of the areas
for P1 and P2; and similarly if Pick’s formula gives the correct
area for P and one of the Pi’s, then it must give the correct
formula for the other Pi . Next we prove the theorem for rect-
angles whose sides are parallel to the coordinate axes. Such a
rectangle necessarily has vertices at (a, b), (a, c), (d, b), and
(d, c), where a, b, c, and d are integers with b < c and a < d.
Its area is (c − b)(d − a). Also, B = 2(c − b + d − a) and
I = (c−b−1)(d−a−1)= (c−b)(d−a)−(c−b)−(d−a)+1.
Therefore, I + B/2− 1 = (c − b)(d − a)− (c − b)− (d −
a) + 1 + (c − b + d − a) − 1 = (c − b)(d − a), which is
the desired area. Next consider a right triangle whose legs are
parallel to the coordinate axes. This triangle is half a rectangle
of the type just considered, for which Pick’s formula holds, so
by the additivity lemma, it holds for the triangle as well. (The
values of B and I are the same for each of the two triangles,
so if Picks’s formula gave an answer that was either too small
or too large, then it would give a correspondingly wrong an-
swer for the rectangle.) For the next step, consider an arbitrary
triangle with vertices at lattice points that is not of the type al-
ready considered. Embed it in as small a rectangle as possible.
There are several possible ways this can happen, but in any
case (and adding one more edge in one case), the rectangle
will have been partitioned into the given triangle and two or
three right triangles with sides parallel to the coordinate axes.
Again by the additivity lemma, we are guaranteed that Pick’s
formula gives the correct area for the given triangle. This com-
pletes the proof of P(3), the basis step in our strong induction
proof. For the inductive step, given an arbitrary polygon, use
Lemma 1 in the text to split it into two polygons. Then by
the additivity lemma above and the inductive hypothesis, we
know that Pick’s formula gives the correct area for this poly-
gon. 21. a) In the left figure ∠abp is smallest, but bp is not
an interior diagonal. b) In the right figure bd is not an interior
diagonal. c) In the right figure bd is not an interior diagonal.
23. a) When we try to prove the inductive step and find a tri-
angle in each subpolygon with at least two sides bordering the
exterior, it may happen in each case that the triangle we are
guaranteed in fact borders the diagonal (which is part of the
boundary of that polygon). This leaves us with no triangles
guaranteed to touch the boundary of the original polygon.
b) We proved the stronger statement ∀n ≥ 4 T (n) in Exercise
17. 25. a) The inductive step here allows us to conclude that
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P(3), P(5), . . . are all true, but we can conclude nothing about
P(2), P(4), . . . . b) P(n) is true for all positive integers n, us-
ing strong induction. c) The inductive step here enables us to
conclude that P(2), P(4), P(8), P(16), …are all true, but we
can conclude nothing about P(n) when n is not a power of 2.
d) This is mathematical induction; we can conclude that P(n)

is true for all positive integers n. 27. Suppose, for a proof
by contradiction, that there is some positive integer n such that
P(n) is not true. Let m be the smallest positive integer greater
than n for which P(m) is true; we know that such an m exists
because P(m) is true for infinitely many values of m. But we
know that P(m)→ P(m−1), so P(m−1) is also true. Thus,
m− 1 cannot be greater than n, so m− 1 = n and P(n) is in
fact true. This contradiction shows that P(n) is true for all n.
29. The error is in going from the base case n = 0 to the next
case, n = 1; we cannot write 1 as the sum of two smaller
natural numbers. 31. Assume that the well-ordering prop-
erty holds. Suppose that P(1) is true and that the conditional
statement [P(1)∧P(2)∧ · · ·∧P(n)] → P(n+ 1) is true for
every positive integer n. Let S be the set of positive integers
n for which P(n) is false. We will show S = ∅. Assume that
S �= ∅. Then by the well-ordering property there is a least
integer m in S. We know that m cannot be 1 because P(1) is
true. Because n = m is the least integer such that P(n) is false,
P(1), P (2), . . . , P (m− 1) are true, and m− 1 ≥ 1. Because
[P(1) ∧ P(2) ∧ · · · ∧ P(m− 1)] → P(m) is true, it follows
that P(m) must also be true, which is a contradiction. Hence,
S = ∅. 33. In each case, give a proof by contradiction based
on a “smallest counterexample,” that is, values of n and k such
that P(n, k) is not true and n and k are smallest in some sense.
a) Choose a counterexample with n+ k as small as possible.
We cannot have n = 1 and k = 1, because we are given
that P(1, 1) is true. Therefore, either n > 1 or k > 1. In the
former case, by our choice of counterexample, we know that
P(n− 1, k) is true. But the inductive step then forces P(n, k)

to be true, a contradiction.The latter case is similar. So our
supposition that there is a counterexample mest be wrong,
and P(n, k) is true in all cases. b) Choose a counterexample
with n as small as possible. We cannot have n = 1, because
we are given that P(1, k) is true for all k. Therefore, n > 1.
By our choice of counterexample, we know that P(n− 1, k)

is true. But the inductive step then forces P(n, k) to be true,
a contradiction. c) Choose a counterexample with k as small
as possible. We cannot have k = 1, because we are given that
P(n, 1) is true for all n. Therefore, k > 1. By our choice of
counterexample, we know that P(n, k − 1) is true. But the
inductive step then forces P(n, k) to be true, a contradiction.
35. Let P(n) be the statement that if x1, x2, . . . , xn are n dis-
tinct real numbers, then n− 1 multiplications are used to find
the product of these numbers no matter how parentheses are
inserted in the product. We will prove that P(n) is true using
strong induction. The basis case P(1) is true because 1−1 = 0
multiplications are required to find the product of x1, a product
with only one factor. Suppose that P(k) is true for 1 ≤ k ≤ n.
The last multiplication used to find the product of the n + 1
distinct real numbers x1, x2, . . . , xn, xn+1 is a multiplication

of the product of the first k of these numbers for some k and
the product of the last n + 1 − k of them. By the inductive
hypothesis, k − 1 multiplications are used to find the product
of k of the numbers, no matter how parentheses were inserted
in the product of these numbers, and n− k multiplications are
used to find the product of the other n + 1 − k of them, no
matter how parentheses were inserted in the product of these
numbers. Because one more multiplication is required to find
the product of all n + 1 numbers, the total number of multi-
plications used equals (k − 1) + (n − k) + 1 = n. Hence,
P(n + 1) is true. 37. Assume that a = dq + r = dq ′ + r ′
with 0 ≤ r < d and 0 ≤ r ′ < d. Then d(q − q ′) = r ′ − r .
It follows that d divides r ′ − r . Because −d < r ′ − r < d,
we have r ′ − r = 0. Hence, r ′ = r . It follows that q = q ′.
39. This is a paradox caused by self-reference. The answer is
clearly “no.” There are a finite number of English words, so
only a finite number of strings of 15 words or fewer; there-
fore, only a finite number of positive integers can be so de-
scribed, not all of them. 41. Suppose that the well-ordering
property were false. Let S be a nonempty set of nonnegative
integers that has no least element. Let P(n) be the statement
“i �∈ S for i = 0, 1, . . . , n.” P(0) is true because if 0 ∈ S then
S has a least element, namely, 0. Now suppose that P(n) is
true. Thus, 0 �∈ S, 1 �∈ S, . . . , n �∈ S. Clearly, n+ 1 cannot be
in S, for if it were, it would be its least element. Thus P(n+1)

is true. So by the principle of mathematical induction, n �∈ S

for all nonnegative integers n. Thus, S = ∅, a contradiction.
43. Strong induction implies the principle of mathematical in-
duction, for if one has shown that P(k) → P(k + 1) is true,
then one has also shown that [P(1)∧· · ·∧P(k)] → P(k+1) is
true. By Exercise 41, the principle of mathematical induction
implies the well-ordering property. Therefore by assuming
strong induction as an axiom, we can prove the well-ordering
property.

Section 5.3

1. a) f (1) = 3, f (2) = 5, f (3) = 7, f (4) = 9 b) f (1) = 3,
f (2) = 9, f (3) = 27, f (4) = 81 c) f (1) = 2, f (2) = 4,
f (3) = 16, f (4) = 65,536 d) f (1) = 3, f (2) = 13, f (3)=
183, f (4) = 33,673 3. a) f (2) = −1, f (3) = 5, f (4) = 2,
f (5)= 17 b) f (2)=−4,f (3)= 32,f (4)=−4096,f (5)=
536,870,912 c) f (2) = 8, f (3) = 176, f (4) =92,672,
f (5) = 25,764, 174, 848 d) f (2) = − 1

2 , f (3) = −4,
f (4) = 1

8 , f (5) = −32 5. a) Not valid b) f (n) =
1 − n. Basis step: f (0) = 1 = 1 − 0. Inductive step: if
f (k) = 1− k, then f (k + 1) = f (k)− 1 = 1− k − 1 = 1−
(k + 1). c) f (n) = 4 − n if n > 0, and f (0) = 2. Basis
step: f (0) = 2 and f (1) = 3 = 4 − 1. Inductive step (with
k ≥ 1): f (k + 1) = f (k)− 1 = (4− k)− 1 = 4− (k + 1).
d) f (n) = 2�(n+1)/2�. Basis step: f (0) = 1 = 2�(0+1)/2�
and f (1) = 2 = 2�(1+1)/2�. Inductive step (with k ≥ 1):
f (k+1)= 2f (k−1)= 2·2�k/2� = 2�k/2�+1 = 2�((k+1)+1)/2�.
e) f (n) = 3n. Basis step: Trivial. Inductive step: For odd
n, f (n) = 3f (n − 1) = 3 · 3n−1 = 3n; and for even
n > 1, f (n) = 9f (n − 2) = 9 · 3n−2 = 3n. 7. There
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are many possible correct answers. We will supply relatively
simple ones. a) an+1 = an + 6 for n ≥ 1 and a1 = 6
b) an+1 = an + 2 for n ≥ 1 and a1 = 3 c) an+1 = 10an

for n ≥ 1 and a1 = 10 d) an+1 = an for n ≥ 1 and
a1 = 5 9. F(0) = 0, F (n) = F(n − 1) + n for n ≥ 1
11. Pm(0) = 0, Pm(n + 1) = Pm(n) + m 13. Let P(n)

be “f1 + f3 + · · · + f2n−1 = f2n.” Basis step: P(1) is
true because f1 = 1 = f2. Inductive step: Assume that
P(k) is true. Then f1 + f3 + · · · + f2k−1 + f2k+1 =
f2k + f2k+1 = f2k+2 + f2(k+1). 15. Basis step:
f0f1 + f1f2 = 0 · 1 + 1 · 1 = 12 = f 2

2 . Inductive
step: Assume that f0f1 + f1f2 + · · · + f2k−1f2k = f 2

2k .
Then f0f1 + f1f2 + · · · + f2k−1f2k + f2kf2k+1 +
f2k+1f2k+2 = f 2

2k + f2kf2k+1 + f2k+1f2k+2 =
f2k(f2k+f2k+1)+ f2k+1f2k+2 = f2kf2k+2+f2k+1f2k+2 =
(f2k + f2k+1)f2k+2 = f 2

2k+2. 17. The number of divisions
used by the Euclidean algorithm to find gcd(fn+1, fn) is 0 for
n = 0, 1 for n = 1, and n−1 for n ≥ 2. To prove this result for
n ≥ 2 we use mathematical induction. For n = 2, one division
shows that gcd(f3, f2) = gcd(2, 1) = gcd(1, 0) = 1. Now
assume that k − 1 divisions are used to find gcd(fk+1, fk).
To find gcd(fk+2, fk+1), first divide fk+2 by fk+1 to ob-
tain fk+2 = 1 · fk+1 + fk . After one div- ision we
have gcd(fk+2, fk+1) = gcd(fk+1, fk). By the induc-
tive hypothesis it follows that exactly k − 1 more di-
visions are required. This shows that k divisions are re-
quired to find gcd(fk+2, fk+1), finishing the inductive proof.
19. |A| = −1. Hence, |An| = (−1)n. It follows that
fn+1fn−1 − f 2

n = (−1)n. 21. a) Proof by induction. Ba-
sis step: For n = 1, max(−a1) = −a1 = − min(a1).
For n = 2, there are two cases. If a2 ≥ a1, then
−a1 ≥ −a2, so max(−a1,−a2) = −a1 = −min(a1, a2).
If a2 < a1, then −a1 < −a2, so max(−a1, −a2) =
−a2 = − min(a1, a2). Inductive step: Assume true for
k with k ≥ 2. Then max(−a1, −a2, . . . , −ak, −ak+1) =
max(max(−a1, . . . ,−ak),−ak+1)=max(−min(a1, . . . , ak),
−ak+1) = −min(min(a1, . . . , ak), ak+1) = −min(a1, . . . ,

ak+1). b) Proof by mathematical induction. Basis step: For
n = 1, the result is the identity a1 + b1 = a1 + b1. For
n = 2, first consider the case in which a1 + b1 ≥ a2 + b2.
Then max(a1 + b1, a2 + b2) = a1 + b1. Also note
that a1 ≤ max(a1, a2) and b1 ≤ max(b1, b2), so
a1 + b1 ≤ max(a1, a2) + max(b1, b2). Therefore,
max(a1+b1, a2+b2)= a1+b1 ≤max(a1, a2)+max(b1, b2).
The case with a1 + b1 < a2 + b2 is similar. In-
ductive step: Assume that the result is true for k. Then
max(a1 + b1, a2 + b2, . . . , ak + bk, ak+1 + bk+1) =
max(max(a1 + b1, a2 + b2, . . . , ak + bk), ak+1 +
bk+1) ≤ max(max(a1, a2, . . . , ak) + max(b1, b2, . . . , bk),
ak+1 + bk+1) ≤ max(max(a1, a2, . . . , ak),
ak+1) + max(max(b1, b2, . . . , bk), bk+1) =
max(a1, a2, . . . , ak, ak+1) + max(b1, b2, . . . , bk, bk+1).
c) Same as part (b), but replace every occurrence of “max” by
“min” and invert each inequality. 23. 5 ∈ S, and x + y ∈ S

if x, y ∈ S. 25. a) 0 ∈ S, and if x ∈ S, then x + 2 ∈ S

and x − 2 ∈ S. b) 2 ∈ S, and if x ∈ S, then x + 3 ∈ S.

c) 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S, and if x ∈ S, then x + 5 ∈ S.
27. a) (0, 1), (1, 1), (2, 1); (0, 2), (1, 2), (2, 2), (3, 2), (4, 2);
(0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3); (0, 4), (1, 4),
(2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (7, 4), (8, 4) b) Let P(n)

be the statement that a ≤ 2b whenever (a, b) ∈ S is obtained
by n applications of the recursive step. Basis step: P(0) is true,
because the only element of S obtained with no applications
of the recursive step is (0, 0), and indeed 0 ≤ 2 · 0. Inductive
step: Assume that a ≤ 2b whenever (a, b) ∈ S is obtained
by k or fewer applications of the recursive step, and consider
an element obtained with k + 1 applications of the recursive
step. Because the final application of the recursive step to
an element (a, b) must be applied to an element obtained
with fewer applications of the recursive step, we know that
a ≤ 2b. Add 0 ≤ 2, 1 ≤ 2, and 2 ≤ 2, respectively, to obtain
a ≤ 2(b + 1), a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1), as
desired. c) This holds for the basis step, because 0 ≤ 0. If this
holds for (a, b), then it also holds for the elements obtained
from (a, b) in the recursive step, because adding 0 ≤ 2, 1 ≤ 2,
and 2 ≤ 2, respectively, to a ≤ 2b yields a ≤ 2(b + 1),
a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1). 29. a) Define
S by (1, 1) ∈ S, and if (a, b) ∈ S, then (a + 2, b) ∈ S,
(a, b + 2) ∈ S, and (a + 1, b + 1) ∈ S. All elements put
in S satisfy the condition, because (1, 1) has an even sum of
coordinates, and if (a, b) has an even sum of coordinates, then
so do (a+2, b), (a, b+2), and (a+1, b+1). Conversely, we
show by induction on the sum of the coordinates that if a+ b

is even, then (a, b) ∈ S. If the sum is 2, then (a, b) = (1, 1),
and the basis step put (a, b) into S. Otherwise the sum is
at least 4, and at least one of (a − 2, b), (a, b − 2), and
(a − 1, b − 1) must have positive integer coordinates whose
sum is an even number smaller than a+b, and therefore must
be in S. Then one application of the recursive step shows that
(a, b) ∈ S. b) Define S by (1, 1), (1, 2), and (2, 1) are in S,
and if (a, b) ∈ S, then (a + 2, b) and (a, b + 2) are in S. To
prove that our definition works, we note first that (1, 1), (1, 2),
and (2, 1) all have an odd coordinate, and if (a, b) has an odd
coordinate, then so do (a + 2, b) and (a, b + 2). Conversely,
we show by induction on the sum of the coordinates that if
(a, b) has at least one odd coordinate, then (a, b) ∈ S. If
(a, b) = (1, 1) or (a, b) = (1, 2) or (a, b) = (2, 1), then
the basis step put (a, b) into S. Otherwise either a or b is
at least 3, so at least one of (a − 2, b) and (a, b − 2) must
have positive integer coordinates whose sum is smaller than
a + b, and therefore must be in S. Then one application of
the recursive step shows that (a, b) ∈ S. c) (1, 6) ∈ S and
(2, 3) ∈ S, and if (a, b) ∈ S, then (a + 2, b) ∈ S and
(a, b + 6) ∈ S. To prove that our definition works, we note
first that (1, 6) and (2, 3) satisfy the condition, and if (a, b)

satisfies the condition, then so do (a + 2, b) and (a, b + 6).
Conversely we show by induction on the sum of the coordi-
nates that if (a, b) satisfies the condition, then (a, b) ∈ S.
For sums 5 and 7, the only points are (1, 6), which the basis
step put into S, (2, 3), which the basis step put into S, and
(4, 3) = (2 + 2, 3), which is in S by one application of the
recursive definition. For a sum greater than 7, either a ≥ 3, or
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a ≤ 2 and b ≥ 9, in which case either (a− 2, b) or (a, b− 6)

must have positive integer coordinates whose sum is smaller
than a + b and satisfy the condition for being in S. Then
one application of the recursive step shows that (a, b) ∈ S.
31. If x is a set or a variable representing a set, then x is a
well-formed formula. If x and y are well-formed formulae,
then so are x, (x ∪ y), (x ∩ y), and (x − y). 33. a) If
x ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then m(x) = x; if
s = tx, where t ∈ D∗ and x ∈ D, then m(s) = min(m(s), x).
b) Let t = wx, where w ∈ D∗ and x ∈ D. If w = λ, then
m(st) = m(sx) = min(m(s), x) = min(m(s), m(x)) by
the recursive step and the basis step of the definition of m.
Otherwise, m(st) = m((sw)x) = min(m(sw), x) by the
definition of m. Now m(sw) = min(m(s), m(w)) by the
inductive hypothesis of the structural induction, so m(st) =
min(min(m(s), m(w)), x) = min(m(s), min(m(w), x)) by
the meaning of min. But min(m(w), x) = m(wx) = m(t)

by the recursive step of the definition of m. Thus, m(st) =
min(m(s), m(t)). 35. λR = λ and (ux)R = xuR for x ∈ 	,
u ∈ 	∗. 37. w0 = λ and wn+1 = wwn. 39. When the
string consists of n 0s followed by n 1s for some non- negative
integer n 41. Let P(i) be “l(wi ) = i · l(w).” P(0) is true
because l(w0) = 0 = 0 · l(w). Assume P(i) is true. Then
l(wi+1) = l(wwi ) = l(w) + l(wi ) = l(w) + i · l(w) =
(i + 1) · l(w). 43. Basis step: For the full binary tree con-
sisting of just a root the result is true because n(T ) = 1
and h(T ) = 0, and 1 ≥ 2 · 0 + 1. Inductive step: As-
sume that n(T1) ≥ 2h(T1) + 1 and n(T2) ≥ 2h(T2) + 1.
By the recursive definitions of n(T ) and h(T ), we have
n(T ) = 1+n(T1)+n(T2) and h(T ) = 1+max(h(T1), h(T2)).
Therefore n(T ) = 1 + n(T1) + n(T2) ≥ 1 + 2h(T1) +
1 + 2h(T2) + 1 ≥ 1 + 2 · max(h(T1), h(T2)) + 2 =
1 + 2(max(h(T1), h(T2)) + 1) = 1 + 2h(T ). 45. Basis
step: a0,0 = 0 = 0 + 0. Inductive step: Assume that
am′,n′ = m′ + n′ whenever (m′, n′) is less than (m, n)

in the lexicographic ordering of N × N. If n = 0 then
am,n = am−1,n + 1 = m − 1 + n + 1 = m + n. If n > 0,
then am,n = am,n−1 + 1 = m + n − 1 + 1 = m + n.
47. a) Pm,m = Pm because a number exceeding m cannot be
used in a partition of m. b) Because there is only one way to
partition 1, namely, 1 = 1, it follows that P1,n = 1. Because
there is only one way to partition m into 1s, Pm,1 = 1. When
n > m it follows that Pm,n = Pm,m because a number exceed-
ing m cannot be used. Pm,m = 1+Pm,m−1 because one extra
partition, namely, m = m, arises when m is allowed in the par-
tition. Pm,n = Pm,n−1+Pm−n,n if m > n because a partition of
m into integers not exceeding n either does not use any ns and
hence, is counted in Pm,n−1 or else uses an n and a partition of
m− n, and hence, is counted in Pm−n,n. c) P5 = 7, P6 = 11
49. Let P(n) be “A(n, 2) = 4.” Basis step: P(1) is true
because A(1, 2) = A(0, A(1, 1)) = A(0, 2) = 2 · 2 = 4.
Inductive step: Assume that P(n) is true, that is, A(n, 2) = 4.
Then A(n + 1, 2) = A(n, A(n + 1, 1)) = A(n, 2) = 4.
51. a) 16 b) 65,536 53. Use a double induction argument
to prove the stronger statement: A(m, k) > A(m, l) when
k > l. Basis step: When m = 0 the statement is true because

k > l implies that A(0, k) = 2k > 2l = A(0, l). Inductive
step: Assume that A(m, x) > A(m, y) for all nonnegative
integers x and y with x > y. We will show that this implies
that A(m + 1, k) > A(m + 1, l) if k > l. Basis steps: When
l = 0 and k > 0, A(m+ 1, l) = 0 and either A(m+ 1, k) = 2
or A(m + 1, k) = A(m, A(m + 1, k − 1)). If m = 0,
this is 2A(1, k − 1) = 2k . If m > 0, this is greater than 0
by the inductive hypothesis. In all cases, A(m + 1, k) > 0,
and in fact, A(m + 1, k) ≥ 2. If l = 1 and k > 1, then
A(m+ 1, l) = 2 and A(m+ 1, k) = A(m, A(m+ 1, k− 1)),
with A(m + 1, k − 1) ≥ 2. Hence, by the inductive hypoth-
esis, A(m, A(m + 1, k − 1)) ≥ A(m, 2) > A(m, 1) = 2.
Inductive step: Assume that A(m + 1, r) > A(m + 1, s) for
all r > s, s = 0, 1, . . . , l. Then if k+1 > l+1 it follows that
A(m+1, k+1) = A(m, A(m+1, k)) > A(m, A(m+1, k)) =
A(m + 1, l + 1). 55. From Exercise 54 it follows that
A(i, j) ≥ A(i − 1, j) ≥ · · · ≥ A(0, j) = 2j ≥ j .
57. Let P(n) be “F(n) is well-defined.” Then P(0) is true
because F(0) is specified. Assume that P(k) is true for all
k < n. Then F(n) is well-defined at n because F(n) is
given in terms of F(0), F (1), . . . , F (n− 1). So P(n) is true
for all integers n. 59. a) The value of F(1) is ambiguous.
b) F(2) is not defined because F(0) is not defined. c) F(3)

is ambiguous and F(4) is not defined because F( 4
3 ) makes

no sense. d) The definition of F(1) is ambiguous because
both the second and third clause seem to apply. e) F(2)

cannot be computed because trying to compute F(2) gives
F(2) = 1+ F(F(1)) = 1+ F(2). 61. a) 1 b) 2 c) 3

d) 3 e) 4 f) 4 g) 5 63. f ∗0 (n) = �n/a� 65. f ∗2 (n) =
�log log n� for n ≥ 2, f ∗2 (1) = 0

Section 5.4

1. First, we use the recursive step to write 5! = 5 · 4!. We
then use the recursive step repeatedly to write 4! = 4 · 3!,
3! = 3 · 2!, 2! = 2 · 1!, and 1! = 1 · 0!. Inserting the value
of 0! = 1, and working back through the steps, we see that
1! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 = 6,
4! = 4 · 3! = 4 · 6 = 24, and 5! = 5 · 4! = 5 · 24 = 120.
3. With this input, the algorithm uses the else clause to find
that gcd(8, 13) = gcd(13 mod 8, 8) = gcd(5, 8). It uses this
clause again to find that gcd(5, 8) = gcd(8 mod 5, 5) =
gcd(3, 5), then to get gcd(3, 5) = gcd(5 mod 3, 3) =
gcd(2, 3), then gcd(2, 3) = gcd(3 mod 2, 2) = gcd(1, 2),
and once more to get gcd(1, 2) = gcd(2 mod 1, 1) =
gcd(0, 1). Finally, to find gcd(0, 1) it uses the first step
with a = 0 to find that gcd(0, 1) = 1. Consequently,
the algorithm finds that gcd(8, 13) = 1. 5. First, be-
cause n = 11 is odd, we use the else clause to see
that mpower(3, 11, 5) = (mpower (3, 5, 5)2 mod 5 ·
3 mod 5) mod 5. We next use the else clause again to see
that mpower (3, 5, 5) = (mpower (3, 2, 5)2 mod 5 · 3
mod 5) mod 5. Then we use the else if clause to see
that mpower (3, 2, 5) = mpower (3, 1, 5)2 mod 5. Us-
ing the else clause again, we have mpower (3, 1, 5) =
(mpower (3, 0, 5)2 mod 5 · 3 mod 5) mod 5. Finally, us-
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ing the if clause, we see that mpower (3, 0, 5) = 1.
Working backward it follows that mpower (3, 1, 5) =
(12 mod 5 · 3 mod 5) mod 5 = 3, mpower (3, 2, 5) =
32 mod 5 = 4, mpower (3, 5, 5) = (42 mod 5 ·
3 mod 5) mod 5 = 3, and finally mpower (3, 11, 5) =
(32 mod 5 · 3 mod 5) mod 5 = 2. We conclude that
311 mod 5 = 2.
7. procedure mult(n: positive integer, x: integer)

if n = 1 then return x

else return x + mult (n− 1, x)

9. procedure sum of odds(n: positive integer)
if n = 1 then return 1
else return sum of odds (n− 1)+ 2n− 1

11. procedure smallest(a1, . . . , an: integers)
if n = 1 then return a1

else return
min(smallest (a1, . . . , an−1), an)

13. procedure modfactorial(n, m: positive integers)
if n = 1 then return 1
else return

(n · modfactorial(n− 1, m)) mod m

15. procedure gcd(a, b: nonnegative integers)
{a < b assumed to hold}
if a = 0 then return b

else if a = b − a then return a

else if a < b − a then return gcd(a, b − a)

else return gcd(b − a, a)

17. procedure multiply(x, y: nonnegative integers)
if y = 0 then return 0
else if y is even then

return 2 · multiply (x, y/2)

else return 2 · multiply (x, (y−1)/2)+ x

19. We use strong induction on a. Basis step: If a = 0, we
know that gcd(0, b) = b for all b > 0, and that is precisely
what the if clause does. Inductive step: Fix k > 0, assume
the inductive hypothesis—that the algorithm works correctly
for all values of its first argument less than k—and consider
what happens with input (k, b), where k < b. Because k > 0,
the else clause is executed, and the answer is whatever the
algorithm gives as output for inputs (b mod k, k). Because
b mod k < k, the input pair is valid. By our inductive hy-
pothesis, this output is in fact gcd(b mod k, k), which equals
gcd(k, b) by Lemma 1 in Section 4.3. 21. If n = 1, then
nx = x, and the algorithm correctly returns x. Assume that
the algorithm correctly computes kx. To compute (k + 1)x it
recursively computes the product of k + 1 − 1 = k and x,
and then adds x. By the inductive hypothesis, it computes that
product correctly, so the answer returned is kx+x = (k+1)x,
which is correct.
23. procedure square(n: nonnegative integer)

if n = 0 then return 0
else return square (n− 1)+ 2(n− 1)+ 1

Let P(n) be the statement that this algorithm correctly com-
putes n2. Because 02 = 0, the algorithm works correctly
(using the if clause) if the input is 0. Assume that the algo-
rithm works correctly for input k. Then for input k + 1, it

gives as output (because of the else clause) its output when
the input is k, plus 2(k + 1 − 1) + 1. By the inductive
hypothesis, its output at k is k2, so its output at k + 1 is
k2 + 2(k+ 1− 1)+ 1 = k2 + 2k+ 1 = (k+ 1)2, as desired.
25. n multiplications versus 2n 27. O(log n) versus n

29. procedure a(n: nonnegative integer)
if n = 0 then return 1
else if n = 1 then return 2
else return a(n− 1) · a(n− 2)

31. Iterative

33. procedure iterative(n: nonnegative integer)
if n = 0 then z := 1
else if n = 1 then z := 2
else
x := 1
y := 2
z := 3
for i := 1 to n− 2

w := x + y + z

x := y

y := z

z := w
return z {z is the nth term of the sequence}

35. We first give a recursive procedure and then an iterative
procedure.
procedure r(n: nonnegative integer)
if n < 3 then return 2n+ 1
else return r(n− 1) · (r(n− 2))2 · (r(n− 3))3

procedure i(n: nonnegative integer)
if n = 0 then z := 1
else if n = 1 then z := 3
else
x := 1
y := 3
z := 5
for i := 1 to n− 2

w := z · y2 · x3

x := y

y := z

z := w
return z {z is the nth term of the sequence}
The iterative version is more efficient.

37. procedure reverse(w: bit string)
n := length(w)
if n ≤ 1 then return w
else return

substr(w, n, n)reverse (substr (w, 1, n− 1))

{substr(w, a, b) is the substring of w consisting of
the symbols in the ath through bth positions}

39. The procedure correctly gives the reversal of λ as λ (basis
step), and because the reversal of a string consists of its last
character followed by the reversal of its first n − 1 charac-
ters (see Exercise 35 in Section 5.3), the algorithm behaves
correctly when n > 0 by the inductive hypothesis. 41. The
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algorithm implements the idea of Example 14 in Section 5.1.
If n = 1 (basis step), place the one right triomino so that its
armpit corresponds to the hole in the 2×2 board. If n > 1, then
divide the board into four boards, each of size 2n−1 × 2n−1,
notice which quarter the hole occurs in, position one right tri-
omino at the center of the board with its armpit in the quarter
where the missing square is (see Figure 7 in Section 5.1), and
invoke the algorithm recursively four times—once on each of
the 2n−1×2n−1 boards, each of which has one square missing
(either because it was missing to begin with, or because it is
covered by the central triomino).

43. procedure A(m, n: nonnegative integers)
if m = 0 then return 2n

else if n = 0 then return 0
else if n = 1 then return 2
else return A(m− 1, A(m, n− 1))

45. bdafghzpok
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47. Let the two lists be 1, 2, . . . , m − 1, m + n − 1 and
m, m + 1, . . . , m + n − 2, m + n, respectively. 49. If
n = 1, then the algorithm does nothing, which is correct be-
cause a list with one element is already sorted. Assume that
the algorithm works correctly for n = 1 through n = k. If
n = k+1, then the list is split into two lists, L1 and L2. By the
inductive hypothesis, mergesort correctly sorts each of these
sublists; furthermore, merge correctly merges two sorted lists
into one because with each comparison the smallest element
in L1 ∪L2 not yet put into L is put there. 51. O(n) 53. 6
55. O(n2)

Section 5.5

1. Suppose that x = 0. The program segment first assigns the
value 1 to y and then assigns the value x + y = 0+ 1 = 1 to
z. 3. Suppose that y = 3. The program segment assigns the
value 2 to x and then assigns the value x+y = 2+3 = 5 to z.

Because y = 3 > 0 it then assigns the value z+1 = 5+1 = 6
to z.
5. (p∧ condition1){S1}q

(p∧ ¬condition1 ∧ condition2){S2}q
·
·
·

(p∧ ¬condition1 ∧ ¬condition2
· · · ∧ ¬condition(n− 1){Sn}q

∴ p{if condition1 then S1;
else if condition2 then S2; . . . ; else Sn}q

7. We will show that p : “power = xi−1 and i ≤ n + 1” is a
loop invariant. Note that p is true initially, because before the
loop starts, i = 1 and power= 1 = x0 = x1−1. Next, we must
show that if p is true and i ≤ n after an execution of the loop,
then p remains true after one more execution. The loop incre-
ments i by 1. Hence, because i ≤ n before this pass, i ≤ n+1
after this pass. Also the loop assigns power · x to power. By
the inductive hypothesis we see that power is assigned the
value xi−1 · x = xi . Hence, p remains true. Furthermore, the
loop terminates after n traversals of the loop with i = n + 1
because i is assigned the value 1 prior to entering the loop, is
incremented by 1 on each pass, and the loop terminates when
i > n. Consequently, at termination power = xn, as desired.
9. Suppose that p is “m and n are integers.” Then if the con-
dition n < 0 is true, a = −n = |n| after S1 is executed. If the
condition n < 0 is false, then a = n = |n| after S1 is executed.
Hence, p{S1}q is true where q is p ∧ (a = |n|). Because S2
assigns the value 0 to both k and x, it is clear that q{S2}r is
true where r is q ∧ (k = 0)∧ (x = 0). Suppose that r is true.
Let P(k) be “x = mk and k ≤ a.” We can show that P(k) is a
loop invariant for the loop in S3. P(0) is true because before
the loop is entered x = 0 = m·0 and 0 ≤ a. Now assume P(k)

is true and k < a. Then P(k+1) is true because x is assigned
the value x +m = mk+m = m(k+ 1). The loop terminates
when k = a, and at that point x = ma. Hence, r{S3}s is true
where s is “a = |n| and x = ma.” Now assume that s is
true. Then if n < 0 it follows that a = −n, so x = −mn.
In this case S4 assigns −x = mn to product. If n > 0 then
x = ma = mn, so S4 assigns mn to product. Hence, s{S4}t
is true. 11. Suppose that the initial assertion p is true. Then
because p{S}q0 is true, q0 is true after the segment S is exe-
cuted. Because q0 → q1 is true, it also follows that q1 is true
after S is executed. Hence, p{S}q1 is true. 13. We will use
the proposition p, “gcd(a, b) = gcd(x, y) and y ≥ 0,” as the
loop invariant. Note that p is true before the loop is entered,
because at that point x = a, y = b, and y is a positive inte-
ger, using the initial assertion. Now assume that p is true and
y > 0; then the loop will be executed again. Inside the loop, x
and y are replaced by y and x mod y, respectively. By Lemma
1 of Section 4.3, gcd(x, y) = gcd(y, x mod y). Therefore,
after execution of the loop, the value of gcd(x, y) is the same
as it was before. Moreover, because y is the remainder, it is
at least 0. Hence, p remains true, so it is a loop invariant.
Furthermore, if the loop terminates, then y = 0. In this case,
we have gcd(x, y) = x, the final assertion. Therefore, the
program, which gives x as its output, has correctly computed
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gcd(a, b). Finally, we can prove the loop must terminate, be-
cause each iteration causes the value of y to decrease by at
least 1. Therefore, the loop can be iterated at most b times.

Supplementary Exercises

1. Let P(n) be the statement that this equation holds. Basis
step: P(1) says 2/3 = 1 − (1/31), which is true. Inductive
step: Assume that P(k) is true. Then 2/3 + 2/9 + 2/27 +
· · · + 2/3n + 2/3n+1 = 1− 1/3n + 2/3n+1 (by the inductive
hypothesis), and this equals 1 − 1/3n+1, as desired. 3. Let
P(n) be “1 · 1 + 2 · 2 + · · · + n · 2n−1 = (n − 1)2n + 1.”
Basis step: P(1) is true because 1 · 1 = 1 = (1 − 1)21 + 1.
Inductive step: Assume that P(k) is true. Then 1 · 1+ 2 · 2+
· · · + k · 2k−1 + (k + 1) · 2k = (k − 1)2k + 1+ (k + 1)2k =
2k · 2k + 1 = [(k + 1) − 1]2k+1 + 1. 5. Let P(n) be
“1/(1 · 4) + · · · + 1/[(3n − 2)(3n + 1)] = n/(3n + 1).”
Basis step: P(1) is true because 1/(1 · 4) = 1/4. Inductive
step: Assume P(k) is true. Then 1/(1 · 4) + · · · + 1/[(3k −
2)(3k+ 1)]+ 1/[(3k+ 1)(3k+ 4)] = k/(3k+ 1)+1/[(3k+
1)(3k + 4)] = [k(3k + 4) + 1]/[(3k + 1)(3k + 4)] =
[(3k + 1)(k + 1)]/[(3k + 1)(3k + 4)] = (k + 1)/(3k + 4).
7. Let P(n) be “2n > n3.” Basis step: P(10) is true because
1024 > 1000. Inductive step: Assume P(k) is true. Then
(k + 1)3 = k3 + 3k2 + 3k + 1 ≤ k3 + 9k2 ≤ k3 + k3 =
2k3 < 2 · 2k = 2k+1. 9. Let P(n) be “a − b is a factor
of an − bn.” Basis step: P(1) is trivially true. Assume P(k)

is true. Then ak+1 − bk+1 = ak+1 − abk + abk − bk+1 =
a(ak − bk) + bk(a − b). Then because a − b is a factor of
ak − bk and a − b is a factor of a − b, it follows that a − b

is a factor of ak+1 − bk+1. 11. Basis step: When n = 1,
6n+1 + 72n−1 = 36 + 7 = 43. Inductive step: Assume the
inductive hypothesis, that 43 divides 6n+1 + 72n−1; we must
show that 43 divides 6n+2 + 72n+1. We have 6n+2 + 72n+1 =
6 · 6n+1 + 49 · 72n−1 = 6 · 6n+1 + 6 · 72n−1 + 43 · 72n−1 =
6(6n+1 + 72n−1) + 43 · 72n−1. By the inductive hypothesis
the first term is divisible by 43, and the second term is clearly
divisible by 43; therefore the sum is divisible by 43. 13. Let
P(n) be “a+(a+d)+· · ·+(a+nd) = (n+1)(2a+nd)/2.”
Basis step: P(1) is true because a + (a + d) = 2a + d =
2(2a + d)/2. Inductive step: Assume that P(k) is true. Then
a + (a + d) + · · · + (a + kd) + [a + (k + 1)d] =
(k + 1)(2a + kd)/2+ a + (k + 1)d = 1

2 (2ak + 2a + k2d +
kd + 2a + 2kd + 2d) = 1

2 (2ak + 4a + k2d + 3kd + 2d) =
1
2 (k + 2)[2a + (k + 1)d]. 15. Basis step: This is true for
n = 1 because 5/6 = 10/12. Inductive step: Assume that
the equation holds for n = k, and consider n = k + 1. Then∑k+1

i=1
i+4

i(i+1)(i+2)
= ∑k

i=1
i+4

i(i+1)(i+2)
+ k+5

(k+1)(k+2)(k+3)
=

k(3k+7)
2(k+1)(k+2)

+ k+5
(k+1)(k+2)(k+3)

(by the inductive hypothesis)

= 1
(k+1)(k+2)

· (
k(3k+7)

2 + k+5
k+3 ) = 1

2(k+1)(k+2)(k+3)
·

[k(3k + 7) (k + 3) + 2(k + 5)] = 1
2(k+1)(k+2)(k+3)

·
(3k3+16k2 + 23k+ 10) = 1

2(k+1)(k+2)(k+3)
· (3k+ 10)(k+

1)2 = 1
2(k+2)(k+3)

· (3k+10)(k+1) = (k+1)(3(k+1)+7)
2((k+1)+1)((k+1)+2)

, as
desired. 17. Basis step: The statement is true for n = 1 be-

cause the derivative of g(x) = xex is x · ex + ex = (x + 1)ex

by the product rule. Inductive step: Assume that the state-
ment is true for n = k, i.e., the kth derivative is given by
g(k) = (x+k)ex . Differentiating by the product rule gives the
(k+1)st derivative: g(k+1) = (x+k)ex+ex = [x+(k+1)]ex ,
as desired. 19. We will use strong induction to show that fn

is even if n ≡ 0 (mod 3) and is odd otherwise. Basis step: This
follows because f0 = 0 is even and f1 = 1 is odd. Inductive
step: Assume that if j ≤ k, then fj is even if j ≡ 0 (mod 3)
and is odd otherwise. Now suppose k + 1 ≡ 0 (mod 3). Then
fk+1 = fk + fk−1 is even because fk and fk−1 are both odd.
If k + 1 ≡ 1 (mod 3), then fk+1 = fk + fk−1 is odd because
fk is even and fk−1 is odd. Finally, if k+ 1 ≡ 2 (mod 3), then
fk+1 = fk + fk−1 is odd because fk is odd and fk−1 is even.
21. Let P(n) be the statement that fkfn+fk+1fn+1 = fn+k+1

for every nonnegative integer k. Basis step: This consists of
showing that P(0) and P(1) both hold. P(0) is true because
fkf0 + fk+1f1 = fk+1 · 0 + fk+1 · 1 = f1. Because
fkf1 + fk+1f2 = fk + fk+1 = fk+2, it follows that P(1)

is true. Inductive step: Now assume that P(j) holds. Then,
by the inductive hypothesis and the recursive definition of the
Fibonacci numbers, it follows that fk+1fj+1 + fk+2fj+2 =
fk(fj−1+ fj )+ fk+1(fj + fj+1) = (fkfj−1 + fk+1fj )+
(fkfj +fk+1fj+1) = fj−1+k+1+fj+k+1 = fj+k+2. This
shows that P(j + 1) is true. 23. Let P(n) be the statement
l2
0 + l2

1 + · · · + l2
n = lnln+1 + 2. Basis step: P(0) and P(1)

both hold because l2
0 = 22 = 2 · 1 + 2 = l0l1 + 2 and

l2
0 + l2

1 = 22 + 12 = 1 · 3 + 2 = l1l3 + 2. Inductive
step: Assume that P(k) holds. Then by the inductive hypoth-
esis l2

0 + l2
1 + · · · + l2

k + l2
k+1 = lklk+1 + 2 + l2

k+1 =
lk+1(lk + lk+1) + 2 = lk+1lk+2 + 2. This shows that
P(k + 1) holds. 25. Let P(n) be the statement that the
identity holds for the integer n. Basis step: P(1) is obvi-
ously true. Inductive step: Assume that P(k) is true. Then
cos((k+1)x)+i sin((k+1)x)= cos(kx+x)+i sin(kx+x)=
cos kx cos x − sin kx sin x + i(sin kx cos x + cos kx sin x) =
cos x(cos kx + i sin kx)(cos x + i sin x) = (cos x +
i sin x)k(cos x + i sin x) = (cos x + i sin x)k+1. It fol-
lows that P(k + 1) is true. 27. Rewrite the right-hand side
as 2n+1(n2−2n+3)−6. For n = 1 we have 2 = 4 ·2−6. As-
sume that the equation holds for n= k, and consider n= k+1.
Then

∑k+1
j=1 j22j =∑k

j=1 j22j + (k+ 1)22k+1 = 2k+1(k2−
2k + 3) − 6 + (k2 + 2k + 1)2k+1 (by the inductive hypo-
thesis) = 2k+1(2k2 + 4) − 6 = 2k+2(k2 + 2) − 6 =
2k+2[(k + 1)2 − 2(k + 1) + 3] − 6. 29. Let P(n) be the
statement that this equation holds. Basis step: In P(2) both
sides reduce to 1/3. Inductive step: Assume that P(k) is true.

Then
∑k+1

j=1 1/(j2− 1) =
(∑k

j=1 1/(j2 − 1)
)
+ 1/[(k +

1)2 − 1] = (k − 1)(3k + 2)/[4k(k + 1)] + 1/[(k + 1)2 − 1]
by the inductive hypothesis. This simplifies to (k − 1)(3k +
2)/[4k(k+ 1)]+ 1/(k2+ 2k) = (3k3+ 5k2)/[4k(k+ 1)(k+
2)] = {[(k+1)−1][3(k+1)+2]}/[4(k+1)(k+2)], which is
exactly what P(k+1) asserts. 31. Let P(n) be the assertion
that at least n+1 lines are needed to cover the lattice points in
the given triangular region. Basis step: P(0) is true, because
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we need at least one line to cover the one point at (0, 0). Induc-
tive step: Assume the inductive hypothesis, that at least k+ 1
lines are needed to cover the lattice points with x ≥ 0, y ≥ 0,
and x + y ≤ k. Consider the triangle of lattice points defined
by x ≥ 0, y ≥ 0, and x+y ≤ k+1. By way of contradiction,
assume that k + 1 lines could cover this set. Then these lines
must cover the k + 2 points on the line x + y = k + 1.
But only the line x + y = k + 1 itself can cover more than
one of these points, because two distinct lines intersect in at
most one point. Therefore none of the k + 1 lines that are
needed (by the inductive hypothesis) to cover the set of lattice
points within the triangle but not on this line can cover more
than one of the points on this line, and this leaves at least one
point uncovered. Therefore our assumption that k + 1 lines
could cover the larger set is wrong, and our proof is complete.
33. Let P(n) be Bk = MAkM−1. Basis step: Part of the given
conditions. Inductive step: Assume the inductive hypothesis.
Then Bk+1 = BBk = MAM−1Bk = MAM−1MAkM−1 (by
the inductive hypothesis) = MAIAkM−1 = MAAkM−1 =
MAk+1M−1. 35. We prove by mathematical induction the
following stronger statement: For every n ≥ 3, we can write
n! as the sum of n of its distinct positive divisors, one of which
is 1. That is, we can write n! = a1+a2+· · ·+an, where each
ai is a divisor of n!, the divisors are listed in strictly decreasing
order, and an = 1. Basis step: 3! = 3+ 2+ 1. Inductive step:
Assume that we can write k! as a sum of the desired form, say
k! = a1 + a2 + · · · + ak , where each ai is a divisor of n!,
the divisors are listed in strictly decreasing order, and an = 1.
Consider (k + 1)!. Then we have (k + 1)! = (k + 1)k! =
(k+ 1)(a1+ a2+ · · · + ak) = (k+ 1)a1+ (k+ 1)a2+ · · ·+
(k + 1)ak = (k + 1)a1 + (k + 1)a2 + · · · + k · ak + ak . Be-
cause each ai was a divisor of k!, each (k+1)ai is a divisor of
(k+1)!. Furthermore, k ·ak = k, which is a divisor of (k+1)!,
and ak = 1, so the new last summand is again 1. (Notice also
that our list of summands is still in strictly decreasing order.)
Thus we have written (k+1)! in the desired form. 37. When
n = 1 the statement is vacuously true. Assume that the state-
ment is true for n = k, and consider k + 1 people standing
in a line, with a woman first and a man last. If the kth person
is a woman, then we have that woman standing in front of the
man at the end. If the kth person is a man, then the first k peo-
ple in line satisfy the conditions of the inductive hypothesis
for the first k people in line, so again we can conclude that
there is a woman directly in front of a man somewhere in the
line. 39. Basis step: When n = 1 there is one circle, and
we can color the inside blue and the outside red to satisfy the
conditions. Inductive step: Assume the inductive hypothesis
that if there are k circles, then the regions can be 2-colored
such that no regions with a common boundary have the same
color, and consider a situation with k+1 circles. Remove one
of the circles, producing a picture with k circles, and invoke
the inductive hypothesis to color it in the prescribed manner.
Then replace the removed circle and change the color of ev-
ery region inside this circle. The resulting figure satisfies the
condition, because if two regions have a common boundary,
then either that boundary involved the new circle, in which

case the regions on either side used to be the same region and
now the inside portion is different from the outside, or else
the boundary did not involve the new circle, in which case
the regions are colored differently because they were colored
differently before the new circle was restored. 41. If n = 1
then the equation reads 1 · 1 = 1 · 2/2, which is true. Assume
that the equation is true for n and consider it for n+ 1. Then
∑n+1

j=1(2j − 1)
(∑n+1

k=j
1
k

)
= ∑n

j=1(2j − 1)
(∑n+1

k=j
1
k

)
+

[2(n+ 1)− 1] · 1
n+1 =

∑n
j=1(2j − 1)

(
1

n+1 +
∑n

k=j
1
k

)
+

2n+1
n+1 =

(
1

n+1

∑n
j=1(2j − 1)

)
+
(∑n

j=1(2j − 1)
∑n

k=j
1
k

)
+ 2n+1

n+1 =
(

1
n+1 · n2

)
+ n(n+1)

2 + 2n+1
n+1

(by the inductive hypothesis) = 2n2+n(n+1)2+(4n+2)
2(n+1)

=
2(n+1)2+n(n+1)2

2(n+1)
= (n+1)(n+2)

2 . 43. Let T (n) be the state-

ment that the sequence of towers of 2 is eventually constant
modulo n. We use strong induction to prove that T (n) is true
for all positive integers n. Basis step: When n = 1 (and n = 2),
the sequence of towers of 2 modulo n is the sequence of all 0s.
Inductive step: Suppose that k is an integer with k ≥ 2. Sup-
pose that T (j) is true for 1 ≤ j ≤ k − 1. In the proof of the
inductive step we denote the rth term of the sequence mod-
ulo n by ar . First suppose k is even. Let k = 2sq where s ≥ 1
and q < k is odd. When j is large enough, aj−2 ≥ s, and for
such j , aj = 22aj−2

is a multiple of 2s . It follows that for suffi-
ciently large j , aj ≡ 0 (mod 2s). Hence, for large enough i, 2s

divides ai+1−ai . By the inductive hypothesis T (q) is true, so
the sequence a1, a2, a3, . . . is eventually constant modulo q.
This implies that for large enough i, q divides ai+1 − ai . Be-
cause gcd(q, 2s) = 1 and for sufficiently large i both q and
2s divide ai+1−ai , k = 2sq divides ai+1−ai for sufficiently
large i. Hence, for sufficiently large i, ai+1−ai ≡ 0 (mod k).
This means that the sequence is eventually constant modulo k.
Finally, suppose k is odd. Then gcd(2, k) = 1, so by Euler’s
theorem (found in elementary number theory books, such as
[Ro10]), we know that 2φ(k) ≡ 1 (mod k). Let r = φ(k). Be-
cause r < k, by the inductive hypothesis T (r), the sequence
a1, a2, a3, . . . is eventually constant modulo r , say equal to c.
Hence for large enough i, for some integer ti , ai = ti r + c.
Hence ai+1 = 2ai = 2ti r+c = (2r )ti 2c ≡ 2c (mod k).
This shows that a1, a2, . . . is eventually constant modulo k.
45. a) 92 b) 91 c) 91 d) 91 e) 91 f) 91 47. The
basis step is incorrect because n �= 1 for the sum shown.
49. Let P(n) be “the plane is divided into n2−n+2 regions by
n circles if every two of these circles have two common points
but no three have a common point.” Basis step: P(1) is true
because a circle divides the plane into 2 = 12−1+2 regions.
Inductive step: Assume that P(k) is true, that is, k circles
with the specified properties divide the plane into k2 − k + 2
regions. Suppose that a (k + 1)st circle is added. This cir-
cle intersects each of the other k circles in two points, so
these points of intersection form 2k new arcs, each of which
splits an old region. Hence, there are 2k regions split, which
shows that there are 2k more regions than there were pre-
viously. Hence, k + 1 circles satisfying the specified prop-
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erties divide the plane into k2 − k + 2 + 2k = (k2+
2k + 1) − (k + 1) + 2 = (k + 1)2 − (k + 1) + 2 re-
gions. 51. Suppose

√
2 were rational. Then

√
2 = a/b,

where a and b are positive integers. It follows that the set
S = {n√2 | n ∈ N}∩N is a nonempty set of positive integers,
because b

√
2 = a belongs to S. Let t be the least element of S,

which exists by the well-ordering property. Then t = s
√

2 for
some integer s. We have t−s = s

√
2−s = s(

√
2−1), so t−s

is a positive integer because
√

2 > 1. Hence, t−s belongs to S.
This is a contradiction because t−s = s

√
2−s < s. Hence,

√
2

is irrational. 53. a) Let d = gcd(a1, a2, . . . , an). Then d is
a divisor of each ai and so must be a divisor of gcd(an−1, an).
Hence, d is a common divisor of a1, a2, . . . , an−2, and
gcd(an−1, an). To show that it is the greatest common divisor
of these numbers, suppose that c is a common divisor of them.
Then c is a divisor of ai for i = 1, 2, . . . , n− 2 and a divisor
of gcd(an−1, an), so it is a divisor of an−1 and an. Hence, c

is a common divisor of a1, a2, . . . , an−1, and an. Hence, it is
a divisor of d, the greatest common divisor of a1, a2, . . . , an.
It follows that d is the greatest common divisor, as claimed.
b) If n = 2, apply the Euclidean algorithm. Otherwise, ap-
ply the Euclidean algorithm to an−1 and an, obtaining d =
gcd(an−1, an), and then apply the algorithm recursively to a1,
a2, . . . , an−2, d. 55. f (n) = n2. Let P(n) be “f (n) = n2.”
Basis step: P(1) is true because f (1)= 1= 12, which follows
from the definition of f . Inductive step: Assume f (n) = n2.
Then f (n+ 1) = f ((n+ 1) − 1)+ 2(n+ 1)− 1 = f (n)+
2n + 1 = n2 + 2n + 1 = (n + 1)2. 57. a) λ, 0, 1, 00,
01, 11, 000, 001, 011, 111, 0000, 0001, 0011, 0111, 1111,
00000, 00001, 00011, 00111, 01111, 11111 b) S = {αβ | α
is a string of m 0s and β is a string of n 1s, m ≥ 0, n ≥ 0}
59. Apply the first recursive step to λ to get () ∈ B. Apply
the second recursive step to this string to get ()() ∈ B. Ap-
ply the first recursive step to this string to get (()()) ∈ B.
By Exercise 62, (())) is not in B because the number of left
parentheses does not equal the number of right parentheses.
61. λ, (), (()), ()() 63. a) 0 b) −2 c) 2 d) 0

65.
procedure generate(n: nonnegative integer)
if n is odd then

S := S(n− 1) {the S constructed by generate(n− 1)}
T := T (n− 1) {the T constructed by generate(n− 1)}

else if n = 0 then
S := ∅
T := {λ}

else
S′ := S(n− 2) {the S constructed by generate(n− 2)}
T ′ := T (n− 2) {the T constructed by generate(n− 2)}
T := T ′ ∪ {(x)|x ∈ T ′ ∪ S′ ∧ length(x) = n− 2}
S := S′ ∪ {xy|x ∈ T ′ ∧ y ∈ T ′ ∪ S′ ∧ length(xy) = n}

{T ∪ S is the set of balanced strings of length at most n}
67. If x ≤ y initially, then x := y is not executed, so x ≤ y

is a true final assertion. If x > y initially, then x := y is
executed, so x ≤ y is again a true final assertion.
69. procedure zerocount(a1, a2, . . . , an: list of integers)

if n = 1 then

if a1 = 0 then return 1
else return 0

else
if an = 0 then return zerocount (a1, a2, . . . , an−1)+ 1
else return zerocount (a1, a2, . . . , an−1)

71. We will prove that a(n) is a natural number and a(n) ≤ n.
This is true for the base case n = 0 because a(0) = 0. Now
assume that a(n−1) is a natural number and a(n−1) ≤ n−1.
Then a(a(n−1)) is a applied to a natural number less than or
equal to n − 1. Hence, a(a(n − 1)) is also a natural number
minus than or equal to n− 1. Therefore, n− a(a(n− 1)) is n

minus some natural number less than or equal to n−1, which is
a natural number less than or equal to n. 73. From Exercise
72, a(n) = �(n+1)μ� and a(n−1) = �nμ�. Because μ < 1,
these two values are equal or they differ by 1. First suppose that
μn−�μn� < 1−μ. This is equivalent to μ(n+1) < 1+�μn�.
If this is true, then �μ(n + 1)� = �μn�. On the other hand,
if μn − �μn� ≥ 1 − μ, then μ(n + 1) ≥ 1 + �μn�,
so �μ(n + 1)� = �μn� + 1, as desired. 75. f (0) = 1,
m(0) = 0; f (1) = 1, m(1) = 0; f (2) = 2, m(2) = 1;
f (3) = 2, m(3) = 2; f (4) = 3, m(4) = 2; f (5) = 3,
m(5) = 3; f (6) = 4, m(6) = 4; f (7) = 5, m(7) = 4;
f (8) = 5, m(8) = 5; f (9) = 6, m(9) = 6 77. The last
occurrence of n is in the position for which the total number of
1s, 2s, . . . , ns all together is that position number. But because
ak is the number of occurrences of k, this is just

∑n
k=1 ak , as

desired. Because f (n) is the sum of the first n terms of the
sequence, f (f (n)) is the sum of the first f (n) terms of the
sequence. But because f (n) is the last term whose value is n,
this means that the sum is the sum of all terms of the sequence
whose value is at most n. Because there are ak terms of the
sequence whose value is k, this sum is

∑n
k=1 k · ak , as desired

CHAPTER 6

Section 6.1

1. a) 5850 b) 343 3. a) 410 b) 510 5. 42 7. 263

9. 676 11. 28 13. n + 1 (counting the empty string)
15. 475,255 (counting the empty string) 17. 1,321,368,961
19. a) 729 b) 256 c) 1024 d) 64 21. a) Seven: 56,
63, 70, 77, 84, 91, 98 b) Five: 55, 66, 77, 88, 99
c) One: 77 23. a) 128 b) 450 c) 9 d) 675 e) 450
f) 450 g) 225 h) 75 25. a) 990 b) 500 c) 27 27. 350

29. 52,457,600 31. 20,077,200 33. a) 37,822,859,361
b) 8,204,716,800 c) 40,159,050, 880 d) 12,113,640,000
e) 171,004,205,215 f) 72,043,541,640 g) 6,230,721,635
h) 223,149,655 35. a) 0 b) 120 c) 720 d) 2520 37. a) 2
if n = 1, 2 if n = 2, 0 if n ≥ 3 b) 2n−2 for n > 1; 1 if
n = 1 c) 2(n − 1) 39. (n + 1)m 41. If n is even, 2n/2;
if n is odd, 2(n+1)/2 43. a) 175 b) 248 c) 232 d) 84
45. 60 47. a) 240 b) 480 c) 360 49. 352 51. 147
53. 33 55. a) 9,920,671,339,261,325,541,376 ≈ 9.9 ×
1021 b) 6,641,514,961,387,068,437,760 ≈ 6.6 ×
1021 c) About 314,000 years 57. 54(6465536 − 1)/63
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59. 7,104,000,000,000 61. 1610 + 1626 + 1658

63. 666,667 65. 18 67. 17 69. 22 71. Let P(m) be
the sum rule for m tasks. For the basis case take m = 2. This
is just the sum rule for two tasks. Now assume that P(m) is
true. Consider m + 1 tasks, T1, T2, . . . ,Tm, Tm+1, which can
be done in n1, n2, . . . , nm, nm+1 ways, respectively, such that
no two of these tasks can be done at the same time. To do one
of these tasks, we can either do one of the first m of these or
do task Tm+1. By the sum rule for two tasks, the number of
ways to do this is the sum of the number of ways to do one of
the first m tasks, plus nm+1. By the inductive hypothesis, this
is n1 + n2 + · · · + nm + nm+1, as desired. 73. n(n− 3)/2

Section 6.2

1. Because there are six classes, but only five weekdays, the
pigeonhole principle shows that at least two classes must be
held on the same day. 3. a) 3 b) 14 5. Because there are
four possible remainders when an integer is divided by 4,
the pigeonhole principle implies that given five integers, at
least two have the same remainder. 7. Let a, a + 1, . . . ,

a + n − 1 be the integers in the sequence. The integers
(a + i) mod n, i = 0, 1, 2, . . . , n − 1, are distinct, because
0 < (a+ j)− (a+ k) < n whenever 0 ≤ k < j ≤ n− 1. Be-
cause there are n possible values for (a + i) mod n and there
are n different integers in the set, each of these values is taken
on exactly once. It follows that there is exactly one integer in
the sequence that is divisible by n. 9. 4951 11. The mid-
point of the segment joining the points (a, b, c) and (d, e, f )

is ((a+d)/2, (b+e)/2, (c+f )/2). It has integer coefficients
if and only if a and d have the same parity, b and e have the
same parity, and c and f have the same parity. Because there
are eight possible triples of parity [such as (even, odd, even)],
by the pigeonhole principle at least two of the nine points have
the same triple of parities. The midpoint of the segment join-
ing two such points has integer coefficients. 13. a) Group
the first eight positive integers into four subsets of two inte-
gers each so that the integers of each subset add up to 9: {1, 8},
{2, 7}, {3, 6}, and {4, 5}. If five integers are selected from the
first eight positive integers, by the pigeonhole principle at least
two of them come from the same subset. Two such integers
have a sum of 9, as desired. b) No. Take {1, 2, 3, 4}, for exam-
ple. 15. 4 17. 21,251 19. a) If there were fewer than 9
freshmen, fewer than 9 sophomores, and fewer than 9 juniors
in the class, there would be no more than 8 with each of these
three class standings, for a total of at most 24 students, con-
tradicting the fact that there are 25 students in the class. b) If
there were fewer than 3 freshmen, fewer than 19 sophomores,
and fewer than 5 juniors, then there would be at most 2 fresh-
men, at most 18 sophomores, and at most 4 juniors, for a total
of at most 24 students. This contradicts the fact that there are
25 students in the class. 21. 4, 3, 2, 1, 8, 7, 6, 5, 12, 11,
10, 9, 16, 15, 14, 13 23. Number the seats around the table
from 1 to 50, and think of seat 50 as being adjacent to seat 1.
There are 25 seats with odd numbers and 25 seats with even
numbers. If no more than 12 boys occupied the odd-numbered

seats, then at least 13 boys would occupy the even-numbered
seats, and vice versa. Without loss of generality, assume that
at least 13 boys occupy the 25 odd-numbered seats. Then at
least two of those boys must be in consecutive odd-numbered
seats, and the person sitting between them will have boys as
both of his or her neighbors.
25. procedure long(a1, . . . , an: positive integers)

{first find longest increasing subsequence}
max := 0; set := 00 . . . 00 {n bits}
for i := 1 to 2n

last := 0; count := 0, OK := true
for j := 1 to n

if set(j) = 1 then
if aj > last then last := aj

count := count + 1
else OK := false

if count > max then
max := count
best := set

set := set+ 1 (binary addition)
{max is length and best indicates the sequence}
{repeat for decreasing subsequence with only

changes being aj < last instead of aj > last
and last := ∞ instead of last := 0}

27. By symmetry we need prove only the first statement. Let
A be one of the people. Either A has at least four friends, or A

has at least six enemies among the other nine people (because
3 + 5 < 9). Suppose, in the first case, that B, C, D, and E

are all A’s friends. If any two of these are friends with each
other, then we have found three mutual friends. Otherwise
{B, C, D, E} is a set of four mutual enemies. In the second
case, let {B, C, D, E, F, G} be a set of enemies of A. By
Example 11, among B, C, D, E, F , and G there are either
three mutual friends or three mutual enemies, who form, with
A, a set of four mutual enemies. 29. We need to show two
things: that if we have a group of n people, then among them
we must find either a pair of friends or a subset of n of them
all of whom are mutual enemies; and that there exists a group
of n − 1 people for which this is not possible. For the first
statement, if there is any pair of friends, then the condition is
satisfied, and if not, then every pair of people are enemies, so
the second condition is satisfied. For the second statement, if
we have a group of n− 1 people all of whom are enemies of
each other, then there is neither a pair of friends nor a subset
of n of them all of whom are mutual enemies. 31. There
are 6,432,816 possibilities for the three initials and a birthday.
So, by the generalized pigeonhole principle, there are at least
�37,000,000/6,432,816� = 6 people who share the same
initials and birthday. 33. Because 800,001 > 200,000, the
pigeonhole principle guarantees that there are at least two
Parisians with the same number of hairs on their heads. The
generalized pigeonhole principle guarantees that there are at
least �800,001/200,000� = 5 Parisians with the same num-
ber of hairs on their heads. 35. 18 37. Because there are
six computers, the number of other computers a computer is
connected to is an integer between 0 and 5, inclusive. How-
ever, 0 and 5 cannot both occur. To see this, note that if some
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computer is connected to no others, then no computer is con-
nected to all five others, and if some computer is connected
to all five others, then no computer is connected to no others.
Hence, by the pigeonhole principle, because there are at most
five possibilities for the number of computers a computer is
connected to, there are at least two computers in the set of six
connected to the same number of others. 39. Label the com-
puters C1 through C100, and label the printers P1 through P20.
If we connect Ck to Pk for k = 1, 2, . . . , 20 and connect each
of the computers C21 through C100 to all the printers, then we
have used a total of 20+80 ·20 = 1620 cables. Clearly this is
sufficient, because if computers C1 through C20 need printers,
then they can use the printers with the same subscripts, and if
any computers with higher subscripts need a printer instead of
one or more of these, then they can use the printers that are not
being used, because they are connected to all the printers. Now
we must show that 1619 cables is not enough. Because there
are 1619 cables and 20 printers, the average number of com-
puters per printer is 1619/20, which is less than 81. Therefore
some printer must be connected to fewer than 81 computers.
That means it is connected to 80 or fewer computers, so there
are 20 computers that are not connected to it. If those 20 com-
puters all needed a printer simultaneously, then they would be
out of luck, because they are connected to at most the 19 other
printers. 41. Let ai be the number of matches completed by
hour i. Then 1 ≤ a1 < a2 < · · · < a75 ≤ 125. Also
25 ≤ a1 + 24 < a2 + 24 < · · · < a75 + 24 ≤ 149. There
are 150 numbers a1, . . . , a75, a1 + 24, . . . , a75 + 24. By the
pigeonhole principle, at least two are equal. Because all the
ais are distinct and all the (ai + 24)s are distinct, it follows
that ai = aj + 24 for some i > j . Thus, in the period from
the (j + 1)st to the ith hour, there are exactly 24 matches.
43. Use the generalized pigeonhole principle, placing the |S|
objects f (s) for s ∈ S in |T | boxes, one for each element of
T . 45. Let dj be jx − N(jx), where N(jx) is the integer
closest to jx for 1 ≤ j ≤ n. Each dj is an irrational num-
ber between −1/2 and 1/2. We will assume that n is even;
the case where n is odd is messier. Consider the n intervals
{x | j/n < x < (j + 1)/n}, {x | −(j + 1)/n < x < −j/n}
for j = 0, 1, . . . , (n/2) − 1. If dj belongs to the interval
{x | 0 < x < 1/n} or to the interval {x | −1/n < x < 0}
for some j , we are done. If not, because there are n − 2 in-
tervals and n numbers dj , the pigeonhole principle tells us
that there is an interval {x | (k − 1)/n < x < k/n} con-
taining dr and ds with r < s. The proof can be finished by
showing that (s − r)x is within 1/n of its nearest integer.
47. a) Assume that ik ≤ n for all k. Then by the generalized
pigeonhole principle, at least �(n2 + 1)/n� = n + 1 of the
numbers i1, i2, . . . , in2+1 are equal. b) If akj

< akj+1 , then the
subsequence consisting of akj

followed by the increasing sub-
sequence of length ikj+1 starting at akj+1 contradicts the fact
that ikj

= ikj+1 . Hence, akj
> akj+1 . c) If there is no increas-

ing subsequence of length greater than n, then parts (a) and
(b) apply. Therefore, we have akn+1 > akn > · · · > ak2 > ak1 ,
a decreasing sequence of length n+ 1.

Section 6.3

1. abc, acb, bac, bca, cab, cba 3. 720 5. a) 120
b) 720 c) 8 d) 6720 e) 40,320 f) 3,628,800 7. 15,120
9. 1320 11. a) 210 b) 386 c) 848 d) 252 13. 2(n!)2

15. 65,780 17. 2100 − 5051 19. a) 1024 b) 45
c) 176 d) 252 21. a) 120 b) 24 c) 120 d) 24
e) 6 f) 0 23. 609,638,400 25. a) 94,109,400 b) 941,094
c) 3,764,376 d) 90,345,024 e) 114,072 f) 2328 g) 24
h) 79,727,040 i) 3,764,376 j) 109,440 27. a) 12,650
b) 303,600 29. a) 37,927 b) 18,915 31. a) 122,523,030
b) 72,930,375 c) 223,149,655 d) 100,626,625 33. 54,600
35. 45 37. 912 39. 11,232,000 41. n!/(r(n − r)!)
43. 13 45. 873

Section 6.4

1. x4 + 4x3y + 6x2y2 + 4xy3 + y4 3. x6 +
6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

5. 101 7. −210
(19

9

) = −94,595,072 9. −2101399
(200

99

)

11. (−1)(200−k)/3
( 100
(200−k)/3

)
if k ≡ 2 (mod 3) and −100 ≤

k ≤ 200; 0 otherwise 13. 1 9 36 84 126 126 84
36 9 1 15. The sum of all the positive numbers

(
n
k

)
, as

k runs from 0 to n, is 2n, so each one of them is no big-
ger than this sum. 17.

(
n
k

) = n(n−1)(n−2)···(n−k+1)
k(k−1)(k−2)···2 ≤

n·n·····n
2·2·····2 = nk/2k−1 19.

(
n

k−1

) + (
n
k

) = n!
(k−1)!(n−k+ 1)! +

n!
k!(n−k)! = n!

k!(n−k+1)! · [k+ (n− k+1)] = (n+1)!
k!(n+1−k)! =

(
n+1
k

)

21. a) We show that each side counts the number of ways
to choose from a set with n elements a subset with k ele-
ments and a distinguished element of that set. For the left-
hand side, first choose the k-set (this can be done in

(
n
k

)
ways)

and then choose one of the k elements in this subset to be
the distinguished element (this can be done in k ways). For
the right-hand side, first choose the distinguished element out
of the entire n-set (this can be done in n ways), and then
choose the remaining k − 1 elements of the subset from the
remaining n− 1 elements of the set (this can be done in

(
n−1
k−1

)

ways). b) k
(
n
k

) = k · n!
k!(n−k)! = n·(n−1)!

(k−1)!(n−k)! = n
(
n−1
k−1

)

23.
(
n+1
k

) = (n+1)!
k!(n+1−k)! = (n+1)

k
n!

(k−1)![n−(k−1)]! = (n+ 1)(
n

k−1

)
/k. This identity together with

(
n
0

) = 1 gives a recursive

definition. 25.
( 2n
n+1

) + (2n
n

) = (2n+1
n+1

) = 1
2

[(2n+1
n+1

) +
(2n+1

n+1

)] = 1
2

[(2n+1
n+1

) +(2n+1
n

)] = 1
2

(2n+2
n+1

)
27. a)

(
n+r+1

r

)

counts the number of ways to choose a sequence of r 0s and
n+ 1 1s by choosing the positions of the 0s. Alternately, sup-
pose that the (j + 1)st term is the last term equal to 1, so that
n≤ j ≤ n+r . Once we have determined where the last 1 is, we
decide where the 0s are to be placed in the j spaces before the
last 1. There are n 1s and j−n 0s in this range. By the sum rule
it follows that there are

∑n+r
j=n

(
j

j−n

)=∑r
k=0

(
n+k
k

)
ways to do

this. b) Let P(r) be the statement to be proved. The basis step
is the equation

(
n
0

) = (n+1
0

)
, which is just 1 = 1. Assume that

P(r) is true. Then
∑r+1

k=0

(
n+k
k

) = ∑r
k=0

(
n+k
k

) + (n+r+1
r+1

) =(
n+r+1

r

)+ (n+r+1
r+1

) = (n+r+2
r+1

)
, using the inductive hypothesis
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and Pascal’s identity. 29. We can choose the leader first in
n different ways. We can then choose the rest of the commit-
tee in 2n−1 ways. Hence, there are n2n−1 ways to choose the
committee and its leader. Meanwhile, the number of ways to
select a committee with k people is

(
n
k

)
. Once we have cho-

sen a committee with k people, there are k ways to choose
its leader. Hence, there are

∑n
k=1 k

(
n
k

)
ways to choose the

committee and its leader. Hence,
∑n

k=1 k
(
n
k

) = n2n−1.
31. Let the set have n elements. From Corollary 2 we have(
n
0

) − (
n
1

) + (
n
2

) − · · · + (−1)n
(
n
n

) = 0. It follows that(
n
0

)+(n2
)+(n4

)+· · · = (n1
)+(n3

)+(n5
)+· · · . The left-hand side

gives the number of subsets with an even number of elements,
and the right-hand side gives the number of subsets with an
odd number of elements. 33. a) A path of the desired type
consists of m moves to the right and n moves up. Each such
path can be represented by a bit string of length m + n with
m 0s and n 1s, where a 0 represents a move to the right and a
1 a move up. b) The number of bit strings of length m + n

containing exactly n 1s equals
(
m+n

n

) = (m+n
m

)
because such a

string is determined by specifying the positions of the n 1s or
by specifying the positions of the m 0s. 35. By Exercise 33
the number of paths of length n of the type described in that
exercise equals 2n, the number of bit strings of length n. On the
other hand, a path of length n of the type described in Exercise
33 must end at a point that has n as the sum of its coordinates,
say (n−k, k) for some k between 0 and n, inclusive. By Exer-
cise 33, the number of such paths ending at (n− k, k) equals(
n−k+k

k

) = (n
k

)
. Hence,

∑n
k=0

(
n
k

) = 2n. 37. By Exercise 33
the number of paths from (0, 0) to (n + 1, r) of the type de-
scribed in that exercise equals

(
n+r+1

r

)
. But such a path starts

by going j steps vertically for some j with 0 ≤ j ≤ r . The
number of these paths beginning with j vertical steps equals
the number of paths of the type described in Exercise 33 that
go from (1, j) to (n+ 1, r). This is the same as the number of
such paths that go from (0, 0) to (n, r−j), which by Exercise
33 equals

(
n+r−j
r−j

)
. Because

∑r
j=0

(
n+r−j
r−j

) =∑r
k=0

(
n+k
k

)
, it

follows that
∑r

k=1

(
n+k
k

) = (n+r−1
r

)
. 39. a)

(
n+1

2

)
b)
(
n+2

3

)

c)
(2n−2

n−1

)
d)
(

n−1
�(n−1)/2�)

)
e) Largest odd entry in nth row of

Pascal’s triangle f)
(3n−3

n−1

)

Section 6.5

1. 243 3. 266 5. 125 7. 35 9. a) 1716 b) 50,388
c) 2,629,575 d) 330 11. 9 13. 4,504,501 15. a) 10,626
b) 1,365 c) 11,649 d) 106 17. 2,520 19. 302,702,400
21. 3003 23. 7,484,400 25. 30,492 27. C(59, 50)

29. 35 31. 83,160 33. 63 35. 19,635 37. 210
39. 27,720 41. 52!/(7!517!) 43. Approximately 6.5× 1032

45. a) C(k + n − 1, n)b) (k + n − 1)!/(k − 1)! 47. There
are C(n, n1) ways to choose n1 objects for the first box.
Once these objects are chosen, there are C(n− n1, n2)

ways to choose objects for the second box. Similarly,
there are C(n − n1 − n2, n3) ways to choose objects
for the third box. Continue in this way until there is

C(n − n1 − n2 − · · · − nk−1, nk) = C(nk, nk) =
1 way to choose the objects for the last box (because
n1 + n2 + · · · + nk = n). By the product rule, the number
of ways to make the entire assignment is C(n, n1)C(n −
n1, n2)C(n − n1 − n2, n3) · · · C(n − n1 − n2 − · · · −
nk−1, nk), which equalsn!/(n1!n2! · · · nk!), as straightforward
simplification shows. 49. a) Because x1 ≤ x2 ≤ · · · ≤ xr ,
it follows that x1 + 0 < x2 + 1 < · · · < xr + r − 1.
The inequalities are strict because xj + j − 1 < xj+1 + j

as long as xj ≤ xj+1. Because 1 ≤ xj ≤ n+ r − 1, this se-
quence is made up of r distinct elements from T . b) Suppose
that 1 ≤ x1 < x2 < · · · < xr ≤ n + r − 1. Let
yk = xk− (k−1). Then it is not hard to see that yk ≤ yk+1 for
k = 1, 2, . . . , r − 1 and that 1 ≤ yk ≤ n for k = 1, 2, . . . r .
It follows that {y1, y2, . . . , yr } is an r-combination with rep-
etitions allowed of S. c) From parts (a) and (b) it follows
that there is a one-to-one correspondence of r-combinations
with repetitions allowed of S and r-combinations of T , a
set with n + r − 1 elements. We conclude that there are
C(n + r − 1, r) r-combinations with repetitions allowed
of S. 51. 65 53. 65 55. 2 57. 3 59. a) 150 b) 25
c) 6 d) 2 61. 90,720 63. The terms in the expansion are
of the form x

n1
1 x

n2
2 · · · xnm

m , where n1 + n2 + · · · + nm = n.
Such a term arises from choosing the x1 in n1 factors, the
x2 in n2 factors, . . . , and the xm in nm factors. This can be
done in C(n; n1, n2, . . . , nm) ways, because a choice is a
permutation of n1 labels “1,” n2 labels “2,” . . . , and nm labels
“m.” 65. 2520

Section 6.6

1. 14532, 15432, 21345, 23451, 23514, 31452, 31542,
43521, 45213, 45321 3. AAA1, AAA2, AAB1, AAB2,
AAC1, AAC2, ABA1, ABA2, ABB1, ABB2, ABC1, ABC2,
ACA1, ACA2, ACB1, ACB2, ACC1, ACC2, BAA1, BAA2,
BAB1, BAB2, BAC1, BAC2, BBA1, BBA2, BBB1, BBB2,
BBC1, BBC2, BCA1, BCA2, BCB1, BCB2, BCC1, BCC2,
CAA1, CAA2, CAB1, CAB2, CAC1, CAC2, CBA1,
CBA2, CBB1, CBB2, CBC1, CBC2, CCA1, CCA2, CCB1,
CCB2, CCC1, CCC2 5. a) 2134 b) 54132 c) 12534
d) 45312 ) 7.1234, 1243, 1324, 1342, 1423, 1432, 2134,
2143, 2314, 2341, 2413, 2431, 3124, 3142, 3214, 3241, 3412,
3421, 4123, 4132, 4213, 4231, 4312, 4321 9. {1, 2, 3},
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},
{2, 3, 5}, {2, 4, 5}, {3, 4, 5} 11. The bit string representing
the next larger r-combination must differ from the bit string
representing the original one in position i because positions
i + 1, . . . , r are occupied by the largest possible numbers.
Also ai + 1 is the smallest possible number we can put in
position i if we want a combination greater than the original
one. Then ai+2, . . . , ai+r− i+1 are the smallest allowable
numbers for positions i + 1 to r . Thus, we have produced
the next r-combination. 13. 123, 132, 213, 231, 312, 321,
124, 142, 214, 241, 412, 421, 125, 152, 215, 251, 512, 521,
134, 143, 314, 341, 413, 431, 135, 153, 315, 351, 513, 531,
145, 154, 415, 451, 514, 541, 234, 243, 324, 342, 423, 432,
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235, 253, 325, 352, 523, 532, 245, 254, 425, 452, 524, 542,
345, 354, 435, 453, 534, 543 15. We will show that it is a
bijection by showing that it has an inverse. Given a positive
integer less than n!, let a1, a2, . . . , an−1 be its Cantor digits.
Put n in position n − an−1; then clearly, an−1 is the number
of integers less than n that follow n in the permutation. Then
put n − 1 in free position (n − 1) − an−2, where we have
numbered the free positions 1, 2, . . . , n − 1 (excluding the
position that n is already in). Continue until 1 is placed in
the only free position left. Because we have constructed an
inverse, the correspondence is a bijection.
17. procedure Cantor permutation(n, i: integers with

n ≥ 1 and 0 ≤ i < n!)
x := n

for j := 1 to n

pj := 0
for k := 1 to n− 1
c := �x/(n− k)!�; x := x − c(n− k)!; h := n

while ph �= 0
h := h− 1

for j := 1 to c

h := h− 1
while ph �= 0
h := h− 1

ph := n− k + 1
h := 1
while ph �= 0
h := h+ 1

ph := 1
{p1p2 . . . pn is the permutation corresponding

to i}

Supplementary Exercises

1. a) 151,200 b) 1,000,000 c) 210 d) 5005 3. 3100

5. 24,600 7. a) 4060 b) 2688 c) 25,009,600 9. a) 192
b) 301 c) 300 d) 300 11. 639 13. The maximum pos-
sible sum is 240, and the minimum possible sum is 15. So
the number of possible sums is 226. Because there are 252
subsets with five elements of a set with 10 elements, by
the pigeonhole principle it follows that at least two have
the same sum. 15. a) 50 b) 50 c) 14 d) 17 17. Let a1,

a2, . . . , am be the integers, and let di = ∑i
j=1 aj . If di ≡ 0

(mod m) for some i, we are done. Otherwise d1 mod m,
d2 mod m, . . . , dm mod m are m integers with values in
{1, 2, . . . , m − 1}. By the pigeonhole principle dk = dl

for some 1 ≤ k < l ≤ m. Then
∑l

j=k+1 aj = dl − dk ≡ 0
(mod m). 19. The decimal expansion of the rational num-
ber a/b can be obtained by division of b into a, where a is
written with a decimal point and an arbitrarily long string of 0s
following it. The basic step is finding the next digit of the quo-
tient, namely, �r/b�, where r is the remainder with the next
digit of the dividend brought down. The current remainder is
obtained from the previous remainder by subtracting b times
the previous digit of the quotient. Eventually the dividend has
nothing but 0s to bring down. Furthermore, there are only

b possible remainders. Thus, at some point, by the pigeon-
hole principle, we will have the same situation as had pre-
viously arisen. From that point onward, the calculation must
follow the same pattern. In particular, the quotient will re-
peat. 21. a) 125,970 b) 20 c) 141,120,525 d) 141,120,505
e) 177,100 f) 141,078,021 23. a) 10 b) 8 c) 7 25. 3n

27. C(n + 2, r + 1) = C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − (C(n, r + 1) + C(n, r)) + (C(n, r) +
C(n, r − 1))= 2C(n+ 1, r + 1)−C(n, r + 1)+C(n, r−1)

29. Substitute x = 1 and y = 3 into the binomial theorem.
31. Both sides count the number of ways to choose a subset
of three distinct numbers {i, j, k} with i < j < k from
{1, 2, . . . , n}. 33. C(n+ 1, 5) 35. 3,491,888,400 37. 524

39. a) 45 b) 57 c) 12 41. a) 386 b) 56 43. 0 if n < m;
C(n − 1, n − m) if n ≥ m 45. a) 15,625 b) 202 c) 210
d) 10 47. a) 3 b) 11 c) 6 d) 10 49. There are two pos-
sibilities: three people seated at one table with everyone else
sitting alone, which can be done in 2C(n, 3) ways (choose the
three people and seat them in one of two arrangements), or two
groups of two people seated together with everyone else sit-
ting alone, which can be done in 3C(n, 4) ways (choose four
people and then choose one of the three ways to pair them
up). Both 2C(n, 3)+ 3C(n, 4) and (3n− 1)C(n, 3)/4 equal
n4/8 − 5n3/12 + 3n2/8 − n/12. 51. The number of per-
mutations of 2n objects of n different types, two of each type,
is (2n)!/2n. Because this must be an integer, the denominator
must divide the numerator. 53. CCGGUCCGAAAG
55. procedure next permutation(n: positive integer,

a1, a2, . . . , ar : positive integers not exceeding
n with a1a2 . . . ar �= nn . . . n)

i := r

while ai = n

ai := 1
i := i − 1

ai := ai + 1
{a1a2 . . . ar is the next permutation in lexicographic

order}
57. We must show that if there are R(m, n−1)+R(m−1, n)

people at a party, then there must be at least m mutual friends
or n mutual enemies. Consider one person; let’s call him Jerry.
Then there are R(m−1, n)+R(m, n−1)−1 other people at
the party, and by the pigeonhole principle there must be at least
R(m− 1, n) friends of Jerry or R(m, n− 1) enemies of Jerry
among these people. First let’s suppose there are R(m− 1, n)

friends of Jerry. By the definition of R, among these people
we are guaranteed to find either m − 1 mutual friends or n

mutual enemies. In the former case, these m−1mutual friends
together with Jerry are a set of m mutual friends; and in the
latter case, we have the desired set of n mutual enemies. The
other situation is similar: Suppose there are R(m, n− 1) ene-
mies of Jerry; we are guaranteed to find among them either m

mutual friends or n − 1 mutual enemies. In the former case,
we have the desired set of m mutual friends, and in the latter
case, these n− 1 mutual enemies together with Jerry are a set
of n mutual enemies.
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CHAPTER 7

Section 7.1

1. 1/13 3. 1/2 5. 1/2 7. 1/64 9. 47/52 11. 1/C(52, 5)

13. 1 − [C(48, 5)/C(52, 5)] 15. C(13, 2)C(4, 2)C(4, 2)

C(44, 1)/C(52, 5) 17. 10,240/C(52, 5) 19. 1,302,540/

C(52, 5) 21. 1/64 23. 8/25 25. a) 1/ C(50, 6) =
1/15,890,700 b) 1/C(52, 6) = 1/20,358,520
c) 1/C(56, 6) = 1/32,468,436 d) 1/C(60, 6) = 1/

50,063,860 27. a) 139,128/319,865 b) 212, 667/511,313
c) 151,340/386,529 d) 163,647/446,276 29. 1/C(100, 8)

31. 3/100 33. a) 1/7,880,400 b) 1/8,000,000
35. a) 9/19 b) 81/361 c) 1/19 d) 1,889,568/2,476,099
e) 48/361 37. Three dice 39. The door the contestant
chooses is chosen at random without knowing where the
prize is, but the door chosen by the host is not chosen at
random, because he always avoids opening the door with the
prize. This makes any argument based on symmetry invalid.
41. a) 671/1296 b) 1− 3524/3624; no c) The former

Section 7.2

1. p(T ) = 1/4, p(H) = 3/4 3. p(1) = p(3) = p(5) =
p(6) = 1/16; p(2) = p(4) = 3/8 5. 9/49 7. a) 1/2
b) 1/2 c) 1/3 d) 1/4 e) 1/4 9. a) 1/26! b) 1/26 c) 1/2
d) 1/26 e) 1/650 f) 1/15,600 11. Clearly, p(E ∪ F) ≥
p(E) = 0.7. Also, p(E ∪ F) ≤ 1. If we apply Theorem 2
from Section 7.1, we can rewrite this as p(E) + p(F) −
p(E ∩ F) ≤ 1, or 0.7 + 0.5 − p(E ∩ F) ≤ 1. Solv-
ing for p(E ∩ F) gives p(E ∩ F) ≥ 0.2. 13. Because
p(E ∪ F) = p(E)+ p(F)− p(E ∩ F) and p(E ∪ F) ≤ 1,
it follows that 1 ≥ p(E) + p(F) − p(E ∩ F). From this
inequality we conclude that p(E) + p(F) ≤ 1 + p(E ∩ F).
15. We will use mathematical induction to prove that the in-
equality holds for n ≥ 2. Let P(n) be the statement that
p(
⋃n

j=1 Ej ) ≤ ∑n
j=1 p(Ej ). Basis step: P(2) is true be-

cause p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2) ≤
p(E1)+p(E2). Inductive step: Assume that P(k) is true. Us-
ing the basis case and the inductive hypothesis, it follows that
p(
⋃k+1

j=1 Ej ) ≤ p(
⋃k

j=1 Ej ) + p(Ek+1) ≤ ∑k+1
j=1 p(Ej ).

This shows that P(k+1) is true, completing the proof by math-
ematical induction. 17. Because E ∪E is the entire sample
space S, the event F can be split into two disjoint events:
F = S ∩ F = (E ∪E) ∩ F = (E ∩ F) ∪ (E ∩ F), using the
distributive law. Therefore, p(F) = p((E ∩F)∪ (E ∩F)) =
p(E ∩ F) + p(E ∩ F), because these two events are dis-
joint. Subtracting p(E ∩ F) from both sides, using the fact
that p(E ∩ F) = p(E) · p(F) (the hypothesis that E

and F are independent), and factoring, we have p(F)[1−
p(E)] = p(E ∩ F). Because 1 − p(E) = p(E), this
says that p(E ∩F) = p(E) ·p(F), as desired. 19. a) 1/12
b) 1− 11

12 · 10
12 · · · · · 13−n

12 c) 5 21. 614 23. 1/4 25. 3/8
27. a) Not independent b) Not independent c) Not inde-
pendent 29. 3/16 31. a) 1/32 = 0.03125 b) 0.495 ≈

0.02825 c) 0.03795012 33. a) 5/8 b) 0.627649 c) 0.6431
35. a) pn b) 1 − pn c) pn + n · pn−1 · (1 −
p) d) 1− [pn + n · pn−1 · (1− p)] 37. p(

⋃∞
i=1 Ei) is

the sum of p(s) for each outcome s in
⋃∞

i=1 Ei . Because
the Eis are pairwise disjoint, this is the sum of the proba-
bilities of all the outcomes in any of the Eis, which is what∑∞

i=1 p(Ei) is. (We can rearrange the summands and still get
the same answer because this series converges absolutely.)
39. a) E = ⋃(m

k)
j=1 Fj , so the given inequality now follows

from Boole’s Inequality (Exercise 15). b) The probability that
a particular player not in the j th set beats all k of the players
in the j th set is (1/2)k = 2−k . Therefore, the probability
that this player does not do so is 1 − 2−k , so the probability
that all m − k of the players not in the j th set are unable to
boast of a perfect record against everyone in the j th set is
(1−2−k)m−k . That is precisely p(Fj ). c) The first inequality
follows immediately, because all the summands are the same
and there are

(
m
k

)
of them. If this probability is less than 1,

then it must be possible that E fails, i.e., that E happens. So
there is a tournament that meets the conditions of the problem
as long as the second inequality holds. d) m ≥ 21 for k = 2,
and m ≥ 91 for k = 3
41. procedure probabilistic prime(n, k)

composite := false
i := 0
while composite = false and i < k

i := i + 1
choose b uniformly at random with 1 < b < n

apply Miller’s test to base b

if n fails the test then composite := true
if composite = true then print (“composite”)
else print (“probably prime”)

Section 7.3

NOTE: In the answers for Section 7.3, all probabili-
ties given in decimal form are rounded to three decimal
places. 1. 3/5 3. 3/4 5. 0.481 7. a) 0.999 b) 0.324
9. a) 0.740 b) 0.260 c) 0.002 d) 0.998 11. 0.724
13. 3/17 15. a) 1/3 b) p(M = j | W = k) = 1
if i, j , and k are distinct; p(M = j | W = k) = 0
if j = k or j = i; p(M = j | W = k) = 1/2
if i = k and j �= i c) 2/3 d) You should change
doors, because you now have a 2/3 chance to win by switch-
ing. 17. The definition of conditional probability tells us
that p(Fj | E) = p(E ∩ Fj )/p(E). For the numerator,
again using the definition of conditional probability, we have
p(E ∩Fj ) = p(E | Fj )p(Fj ), as desired. For the denomina-
tor, we show that p(E) =∑n

i=1 p(E | Fi)p(Fi). The events
E∩Fi partition the event E; that is, (E∩Fi1)∩ (E∩Fi2) = ∅
when ii �= i2 (because the Fi’s are mutually exclusive), and⋃n

i=1(E ∩ Fi1) = E (because the
⋃n

i=1 Fi = S). Therefore,
p(E) =∑n

i=1 p(E∩Fi) =∑n
i=1 p(E | Fi)p(Fi). 19. No

21. Yes 23. By Bayes’ theorem, p(S | E1 ∩E2) = p(E1 ∩
E2 | S)p(S)/[p(E1 ∩ E2 | S)p(S) + p(E1 ∩ E2 | S)p(S)].
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Because we are assuming no prior knowledge about whether
a message is or is not spam, we set p(S) = p(S) = 0.5,
and so the equation above simplifies to p(S | E1 ∩ E2) =
p(E1 ∩ E2 | S)/[p(E1 ∩ E2 | S) + p(E1 ∩ E2 | S)].
Because of the assumed independence of E1, E2, and S, we
have p(E1 ∩ E2 | S) = p(E1 | S) · p(E2 | S), and similarly
for S.

Section 7.4

1. 2.5 3. 5/3 5. 336/49 7. 170 9. (4n + 6)/3
11. 50,700,551/10,077,696 ≈ 5.03 13. 6 15. p(X ≥
j) = ∑∞

k=j p(X = k) = ∑∞
k=j (1 − p)k−1p =

p(1−p)j−1∑∞
k=0(1−p)k = p(1−p)j−1/(1− (1−p)) =

(1 − p)j−1 17. 2302 19. (7/2) · 7 �= 329/12 21. 10
23. 1472 pounds 25. p + (n − 1)p(1 − p) 27. 5/2
29. a) 0 b) n 31. This is not true. For example, let X be
the number of heads in one flip of a fair coin, and let Y be
the number of heads in one flip of a second fair coin. Then
A(X) + A(Y ) = 1 but A(X + Y ) = 0.5. 33. a) We
are told that X1 and X2 are independent. To see that X1
and X3 are independent, we enumerate the eight possi-
bilities for (X1, X2, X3) and find that (0, 0, 0), (1, 0, 1),
(0, 1, 1), (1, 1, 0) each have probability 1/4 and the others
have probability 0 (because of the definition of X3). Thus,
p(X1 = 0 ∧ X3 = 0) = 1/4, p(X1 = 0) = 1/2, and
p(X3 = 0) = 1/2, so it is true that p(X1 = 0 ∧ X3 =
0) = p(X1 = 0)p(X3 = 0). Essentially the same calculation
shows that p(X1 = 0 ∧ X3 = 1) = p(X1 = 0)p(X3 = 1),
p(X1 = 1 ∧ X3 = 0) = p(X1 = 1)p(X3 = 0), and
p(X1 = 1 ∧ X3 = 1) = p(X1 = 1)p(X3 = 1). There-
fore by definition, X1 and X3 are independent. The same
reasoning shows that X2 and X3 are independent. To see
that X3 and X1 + X2 are not independent, we observe that
p(X3 = 1∧X1+X2 = 2) = 0. But p(X3 = 1)p(X1+X2 =
2) = (1/2)(1/4) = 1/8. b) We see from the calculation in
part (a) that X1, X2, and X3 are all Bernoulli random vari-
ables, so the variance of each is (1/2)(1/2) = 1/4. Therefore,
V (X1) + V (X2) + V (X3) = 3/4. We use the calculations
in part (a) to see that E(X1 + X2 + X3) = 3/2, and then
V (X1 +X2 +X3) = 3/4. c) In order to use the first part of
Theorem 7 to show that V ((X1+X2+ · · · +Xk)+Xk+1) =
V (X1 +X2 + · · · +Xk)+ V (Xk+1) in the inductive step of
a proof by mathematical induction, we would have to know
that X1 + X2 + · · · + Xk and Xk+1 are independent, but we
see from part (a) that this is not necessarily true. 35. 1/100
37. E(X)/a =∑r (r/a) ·p(X = r) ≥∑r≥a 1 ·p(X = r) =
p(X ≥ a) 39. a) 10/11 b) 0.9999 41. a) Each of the
n! permutations occurs with probability 1/n!, so E(X) is the
number of comparisons, averaged over all these permutations.
b) Even if the algorithm continues n − 1 rounds, X will be
at most n(n − 1)/2. It follows from the formula for expec-
tation that E(X) ≤ n(n − 1)/2. c) The algorithm proceeds
by comparing adjacent elements and then swapping them
if necessary. Thus, the only way that inverted elements can
become uninverted is for them to be compared and swapped.

d) Because X(P ) ≥ I (P ) for all P , it follows from the
definition of expectation that E(X) ≥ E(I). e) This sum-
mation counts 1 for every instance of an inversion. f) This
follows from Theorem 3. g) By Theorem 2 with n = 1, the
expectation of Ij,k is the probability that ak precedes aj in
the permutation. This is clearly 1/2 by symmetry. h) The
summation in part (f) consists of C(n, 2) = n(n−1)/2 terms,
each equal to 1/2, so the sum is n(n − 1)/4. i) From part
(a) and part (b) we know that E(X), the object of interest, is
at most n(n − 1)/2, and from part (d) and part (h) we know
that E(X) is at least n(n − 1)/4, both of which are �(n2).
43. 1 45. V (X + Y ) = E((X + Y )2) − E(X + Y )2 =
E(X2 + 2XY + Y 2) − [E(X) + E(Y )]2 = E(X2) +
2E(XY) + E(Y 2) − E(X)2 − 2E(X)E(Y ) − E(Y )2 =
E(X2) − E(X)2 + 2[E(XY) − E(X)E(Y )] + E(Y 2) −
E(Y )2 = V (X) + 2 Cov(X, Y ) + V (Y ) 47. [(n − 1)/n]m
49. (n− 1)m/nm−1

Supplementary Exercises

1. 1/109,668 3. a) 1/195,249,054 b) 1/5,138,133
c) 45/357,599 d) 18,285/18,821 5. a) 1/C(52, 13)

b) 4/C(52, 13) c) 2,944,656/C(52, 13) d) 35,335,872/

C(52, 13) 7. a) 9/2 b) 21/4 9. a) 9 b) 21/2 11. a) 8
b) 49/6 13. a) n/2n−1 b) p(1−p)k−1, where p = n/2n−1

c) 2n−1/n 15. (m−1)(n−1)+gcd(m,n)−1
mn−1 17. a) 2/3 b) 2/3

19. 1/32 21. a) The probability that one wins 2n dollars
is 1/2n, because that happens precisely when the player gets
n−1 tails followed by a head. The expected value of the win-
nings is therefore the sum of 2n times 1/2n as n goes from 1 to
infinity. Because each of these terms is 1, the sum is infinite.
In other words, one should be willing to wager any amount of
money and expect to come out ahead in the long run. b) $9, $9
23. a) 1/3 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4};
1/12 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4}
b) 1 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4};
3/4 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4}
25. a) p(E1 ∩ E2) = p(E1)p(E2), p(E1 ∩ E3) =
p(E1)p(E3), p(E2∩E3) = p(E2)p(E3), p(E1∩E2∩E3) =
p(E1) p(E2)p(E3) b) Yes c) Yes; yes d) Yes; no e) 2n−n−1
27. a) 1/2 under first interpretation; 1/3 under second inter-
pretation b) Let M be the event that both of Mr. Smith’s
children are boys and let B be the event that Mr. Smith chose
a boy for today’s walk. Then p(M) = 1/4, p(B | M) = 1,
and p(B | M) = 1/3. Apply Bayes’ theorem to compute
p(M | B) = 1/2. c) This variation is equivalent to the
second interpretation discussed in part (a), so the answer is
unambiguously 1/3. 29. V (aX + b) = E((aX + b)2) −
E(aX + b)2 = E(a2X2 + 2abX + b2) − [aE(X) + b]2 =
E(a2X2)+E(2abX)+E(b2)−[a2E(X)2+2abE(X)+b2] =
a2E(X2)+ 2abE(X)+ b2 − a2E(X)2 − 2abE(X)− b2 =
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a2[E(X2) − E(X)2] = a2V (X) 31. To count every el-
ement in the sample space exactly once, we must include
every element in each of the sets and then take away the
double counting of the elements in the intersections. Thus
p(E1 ∪E2 ∪ · · · ∪Em) = p(E1)+ p(E2)+ · · · + p(Em)−
p(E1∩E2)−p(E1∩E3)−· · ·−p(E1∩Em)−p(E2∩E3)−
p(E2 ∩ E4)− · · · − p(E2 ∩ Em)− · · · − p(Em−1 ∩ Em) =
qm − (m(m − 1)/2)r , because C(m, 2) terms are being
subtracted. But p(E1 ∪ E2 ∪ · · · ∪ Em) = 1, so we have
qm−[m(m−1)/2]r = 1. Because r ≥ 0, this equation tells us
that qm ≥ 1, so q ≥ 1/m. Because q ≤ 1, this equation also
implies that [m(m−1)/2]r = qm−1 ≤ m−1, from which it
follows that r ≤ 2/m. 33. a) We purchase the cards until we
have gotten one of each type. That means we have purchased
X cards in all. On the other hand, that also means that we
purchased X0 cards until we got the first type we got, and then
purchased X1 more cards until we got the second type we got,
and so on. Thus, X is the sum of the Xj ’s. b) Once j distinct
types have been obtained, there are n− j new types available
out of a total of n types available. Because it is equally likely
that we get each type, the probability of success on the next
purchase (getting a new type) is (n − j)/n. c) This follows
immediately from the definition of geometric distribution, the
definition of Xj , and part (b). d) From part (c) it follows that
E(Xj ) = n/(n− j). Thus by the linearity of expectation and
part (a), we have E(X) = E(X0)+ E(X1)+ · · · + E(Xn−1)

= n
n
+ n

n−1 + · · · + n
1 = n

(
1
n
+ 1

n−1 + · · · + 1
1

)
. e) About

224.46 35. 24 · 134/(52 · 51 · 50 · 49)

CHAPTER 8

Section 8.1

1. Let P(n) be “Hn = 2n−1.” Basis step: P(1) is true because
H1 = 1. Inductive step: Assume that Hn = 2n − 1. Then be-
cause Hn+1 = 2Hn+1, it follows that Hn+1 = 2(2n−1)+1=
2n+1 − 1. 3. a) an = 2an−1 + an−5 for n ≥ 5 b) a0 = 1,
a1 = 2, a2 = 4, a3 = 8, a4 = 16 c) 1217 5. 9494
7. a) an = an−1 + an−2 + 2n−2 for n ≥ 2 b) a0 = 0, a1 = 0
c) 94 9. a) an = an−1+ an−2+ an−3 for n ≥ 3 b) a0 = 1,
a1 = 2, a2 = 4 c) 81 11. a) an = an−1 + an−2 for n ≥ 2
b) a0 = 1, a1 = 1 c) 34 13. a) an = 2an−1 + 2an−2 for
n ≥ 2 b) a0 = 1, a1 = 3 c) 448 15. a) an = 2an−1+an−2
for n ≥ 2 b) a0 = 1, a1 = 3 c) 239 17. a) an = 2an−1 for
n ≥ 2 b) a1 = 3 c) 96 19. a) an = an−1+ an−2 for n ≥ 2
b) a0 = 1, a1 = 1 c) 89 21. a) Rn = n + Rn−1, R0 = 1
b) Rn = n(n+1)/2+1 23. a) Sn = Sn−1+(n2−n+2)/2,
S0 = 1 b) Sn = (n3 + 5n + 6)/6 25. 64 27. a) an =
2an−1 + 2an−2 b) a0 = 1, a1 = 3 c) 1224 29. Clearly,
S(m, 1) = 1 for m ≥ 1. If m ≥ n, then a function that
is not onto from the set with m elements to the set with n

elements can be specified by picking the size of the range,
which is an integer between 1 and n − 1 inclusive, picking
the elements of the range, which can be done in C(n, k) ways,
and picking an onto function onto the range, which can be

done in S(m, k) ways. Hence, there are
∑n−1

k=1 C(n, k)S(m, k)

func- tions that are not onto. But there are nm functions
altogether, so S(m, n) = nm − ∑n−1

k=1 C(n, k)S(m, k).
31. a) C5 = C0C4 + C1C3 + C2C2 + C3C1 + C4C0 =
1 · 14+ 1 · 5+ 2 · 2+ 5 · 1+ 14 · 1 = 42 b) C(10, 5)/6 = 42
33. J (1) = 1, J (2) = 1, J (3) = 3, J (4) = 1, J (5) = 3,
J (6) = 5, J (7) = 7, J (8) = 1, J (9) = 3, J (10) = 5,
J (11) = 7, J (12) = 9, J (13) = 11, J (14) = 13, J (15) = 15,
J (16) = 1 35. First, suppose that the number of people is
even, say 2n. After going around the circle once and returning
to the first person, because the people at locations with even
numbers have been eliminated, there are exactly n people left
and the person currently at location i is the person who was
originally at location 2i−1. Therefore, the survivor [originally
in location J (2n)] is now in location J (n); this was the person
who was at location 2J (n) − 1. Hence, J (2n) = 2J (n) − 1.
Similarly, when there are an odd number of people, say 2n+1,
then after going around the circle once and then eliminating
person 1, there are n people left and the person currently at lo-
cation i is the person who was at location 2i+1. Therefore, the
survivor will be the player currently occupying location J (n),
namely, the person who was originally at location 2J (n)+ 1.
Hence, J (2n + 1) = 2J (n) + 1. The basis step is J (1) = 1.
37. 73, 977, 3617 39. These nine moves solve the puzzle:
Move disk 1 from peg 1 to peg 2; move disk 2 from peg 1 to
peg 3; move disk 1 from peg 2 to peg 3; move disk 3 from
peg 1 to peg 2; move disk 4 from peg 1 to peg 4; move disk 3
from peg 2 to peg 4; move disk 1 from peg 3 to peg 2; move
disk 2 from peg 3 to peg 4; move disk 1 from peg 2 to peg 4.
To see that at least nine moves are required, first note that at
least seven moves are required no matter how many pegs are
present: three to unstack the disks, one to move the largest
disk 4, and three more moves to restack them. At least two
other moves are needed, because to move disk 4 from peg 1
to peg 4 the other three disks must be on pegs 2 and 3, so at
least one move is needed to restack them and one move to
unstack them. 41. The base cases are obvious. If n > 1,
the algorithm consists of three stages. In the first stage, by the
inductive hypothesis, R(n− k) moves are used to transfer the
smallest n− k disks to peg 2. Then using the usual three-peg
Tower of Hanoi algorithm, it takes 2k−1 moves to transfer the
rest of the disks (the largest k disks) to peg 4, avoiding peg 2.
Then again by the inductive hypothesis, it takes R(n − k)

moves to transfer the smallest n − k disks to peg 4; all the
pegs are available for this, because the largest disks, now on
peg 4, do not interfere. This establishes the recurrence rela-
tion. 43. First note that R(n) = ∑n

j=1[R(j) − R(j − 1)]
[which follows because the sum is telescoping and R(0) = 0].
By Exercise 42, this is the sum of 2k′−1 for this range of val-
ues of j . Therefore, the sum is

∑k
i=1 i2i−1, except that if

n is not a triangular number, then the last few values when
i = k are missing, and that is what the final term in the
given expression accounts for. 45. By Exercise 43, R(n) is
no larger than

∑k
i=1 i2i−1. It can be shown that this sum equals

(k+1)2k−2k+1+1, so it is no greater than (k+1)2k . Because
n > k(k−1)/2, the quadratic formula can be used to show that
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k < 1+√2n for all n > 1. Therefore, R(n) is bounded above
by (1+√2n+ 1)21+√2n < 8

√
n2
√

2n for all n > 2. Hence,
R(n) is O(

√
n2
√

2n). 47. a) 0 b) 0 c) 2 d) 2n−1 − 2n−2

49. an−2∇an+∇2an = an−2(an−an−1)+(∇an−∇an−1)=
−an + 2an−1 + [(an − an−1) − (an−1 − an−2)] =
−an + 2an−1 + (an − 2an−1 + an−2) = an−2 51. an =
an−1 + an−2 = (an − ∇an) + (an − 2∇an + ∇2an) =
2an − 3∇an + ∇2an, or an = 3∇an − ∇2an 53. Insert
S(0) := ∅ after T (0) := 0 (where S(j) will record the
optimal set of talks among the first j talks), and replace the
statement T (j) := max(wj + T (p(j)), T (j − 1)) with the
following code:

if wj + T (p(j)) > T (j − 1) then
T (j) := wj + T (p(j))

S(j) := S(p(j)) ∪ {j}
else
T (j) := T (j − 1)

S(j) := S(j − 1)

55. a) Talks 1, 3, and 7 b) Talks 1 and 6, or talks 1, 3,
and 7 c) Talks 1, 3, and 7 d) Talks 1 and 6 57. a) This
follows immediately from Example 5 and Exercise 41c in
Section 8.4. b) The last step in computing Aij is to mul-
tiply Aik by Ak+1,j for some k between i and j − 1 in-
clusive, which will require mimk+1mj+1 integer multiplica-
tions, independent of the manner in which Aik and Ak+1,j

are computed. Therefore to minimize the total number of
integer multiplications, each of those two factors must be
computed in the most efficient manner. c) This follows im-
mediately from part (b) and the definition of M(i, j).
d) procedure matrix order(m1, . . . , mn+1:

positive integers)
for i := 1 to n

M(i, i) := 0
for d := 1 to n− 1

for i := 1 to n− d

min := 0
for k := i to i + d

new :=M(i, k)+M(k+ 1, i+ d)+mimk+1mi+d+1
if new < min then

min := new
where(i, i + d) := k

M(i, i + d) := min

e) The algorithm has three nested loops, each of which is in-
dexed over at most n values.

Section 8.2

1. a) Degree 3 b) No c) Degree 4 d) No e) No f) Degree
2 g) No 3. a) an = 3 · 2n b) an = 2 c) an =
3 · 2n − 2 · 3n d) an = 6 · 2n − 2 · n2n e) an = n(−2)n−1

f) an = 2n − (−2)n g) an = (1/2)n+1 − (−1/2)n+1

5. an = 1√
5

(
1+√5

2

)n+1− 1√
5

(
1−√5

2

)n+1
7. [2n+1+(−1)n]/3

9. a) Pn = 1.2Pn−1 + 0.45Pn−2, P0 = 100,000, P1 =
120,000 b) Pn = (250,000/3)(3/2)n+(50,000/3)(−3/10)n

11. a) Basis step: For n = 1 we have 1 = 0 + 1, and
for n = 2 we have 3 = 1 + 2. Inductive step: As-
sume true for k ≤ n. Then Ln+1 = Ln + Ln−1 =
fn−1+ fn+1+fn−2+fn = (fn−1+fn−2)+ (fn+1+fn) =
fn + fn+2. b) Ln =

(
1+√5

2

)n +
(

1−√5
2

)n

13. an =
8(−1)n − 3(−2)n + 4 · 3n 15. an = 5 + 3(−2)n − 3n

17. Let an = C(n, 0)+C(n−1, 1)+· · ·+C(n−k, k) where
k = �n/2�. First, assume that n is even, so that k = n/2,
and the last term is C(k, k). By Pascal’s identity we have
an = 1+C(n− 2, 0)+C(n− 2, 1)+C(n− 3, 1)+C(n−
3, 2) + · · · + C(n − k, k − 2) + C(n − k, k − 1) + 1 =
1+C(n−2, 1)+C(n−3, 2)+· · ·+C(n−k, k−1)+C(n−
2, 0)+C(n−3, 1)+· · ·+C(n−k, k−2)+1 = an−1+an−2
because �(n − 1)/2� = k − 1 = �(n − 2)/2�. A sim-
ilar calculation works when n is odd. Hence, {an} satisfies
the recurrence relation an = an−1 + an−2 for all posi-
tive integers n, n ≥ 2. Also, a1 = C(1, 0) = 1 and
a2 = C(2, 0) + C(1, 1) = 2, which are f2 and f3. It
follows that an = fn+1 for all positive integers n. 19. an =
(n2+3n+5)(−1)n 21. (a1,0+a1,1n+a1,2n

2+a1,3n
3)+

(a2,0+a2,1n+a2,2n
2)(−2)n+ (a3,0+a3,1n)3n+a4,0(−4)n

23. a) 3an−1 + 2n = 3(−2)n + 2n = 2n(−3 + 1) =
−2n+1 = an b) an = α3n − 2n+1 c) an = 3n+1 − 2n+1

25. a) A = −1, B = −7 b) an = α2n − n − 7
c) an = 11 · 2n − n − 7 27. a) p3n

3 + p2n
2 + p1n + p0

b) n2p0(−2)n c) n2(p1n+p0)2n d) (p2n
2+p1n+p0)4n

e) n2(p2n
2 + p1n + p0)(−2)n f) n2(p4n

4 + p3n
3 +

p2n
2 + p1n + p0)2n g) p0 29. a) an = α2n + 3n+1

b) an = −2 · 2n + 3n+1 31. an = α2n + β3n − n ·
2n+1 + 3n/2 + 21/4 33. an = (α + βn + n2 + n3/6)2n

35. an = −4 · 2n − n2/4 − 5n/2 + 1/8 + (39/8)3n

37. an = n(n + 1)(n + 2)/6 39. a) 1,−1, i, −i b) an =
1
4 − 1

4 (−1)n + 2+i
4 in + 2−i

4 (−i)n 41. a) Using the formula

for fn, we see that
∣∣∣fn − 1√

5

(
1+√5

2

)n∣∣∣ =
∣∣∣ 1√

5

(
1−√5

2

)n∣∣∣ <

1/
√

5 < 1/2. This means that fn is the integer clos-
est to 1√

5

(
1+√5

2

)n

. b) Less when n is even; greater
when n is odd 43. an = fn−1 + 2fn − 1
45. a) an = 3an−1 + 4an−2, a0 = 2, a1 = 6 b) an =
[4n+1 + (−1)n]/5 47. a) an = 2an+1 + (n − 1)10,000
b) an = 70,000 · 2n−1 − 10,000n − 10,000 49. an =
5n2/12 + 13n/12 + 1 51. See Chapter 11, Section 5 in
[Ma93]. 53. 6n · 4n−1/n

Section 8.3

1. 14 3. The first step is (1110)2(1010)2 = (24 +
22)(11)2 (10)2 + 22[(11)2 − (10)2][(10)2 − (10)2] +
(22 + 1)(10)2 · (10)2. The product is (10001100)2.
5. C = 50, 665C + 729 = 33,979 7. a) 2 b) 4
c) 7 9. a) 79 b) 48,829 c) 30,517,579 11. O(log n)

13. O(nlog3 2) 15. 5 17. a) Basis step: If the sequence has
just one element, then the one person on the list is the winner.
Recursive step: Divide the list into two parts—the first half
and the second half—as equally as possible. Apply the algo-
rithm recursively to each half to come up with at most two
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names. Then run through the entire list to count the number of
occurrences of each of those names to decide which, if either,
is the winner. b) O(n log n) 19. a) f (n) = f (n/2) + 2
b) O(log n) 21. a) 7 b) O(log n)

23. a) procedure largest sum(a1, . . . , an)

best := 0 {empty subsequence has sum 0}
for i := 1 to n

sum := 0
for j := i + 1 to n

sum := sum+ aj

if sum > best then best := sum

{best is the maximum possible sum of numbers
in the list}

b) O(n2) c) We divide the list into a first half and a second
half and apply the algorithm recursively to find the largest
sum of consecutive terms for each half. The largest sum of
consecutive terms in the entire sequence is either one of these
two numbers or the sum of a sequence of consecutive terms
that crosses the middle of the list. To find the largest possi-
ble sum of a sequence of consecutive terms that crosses the
middle of the list, we start at the middle and move forward
to find the largest possible sum in the second half of the list,
and move backward to find the largest possible sum in the
first half of the list; the desired sum is the sum of these two
quantities. The final answer is then the largest of this sum
and the two answers obtained recursively. The base case is
that the largest sum of a sequence of one term is the larger of
that number and 0. d) 11, 9, 14 e) S(n) = 2S(n/2) + n,
C(n) = 2C(n/2) + n + 2, S(1) = 0, C(1) = 1
f) O(n log n), better than O(n2) 25. (1, 6) and (3, 6) at
distance 2 27. The algorithm is essentially the same as the
algorithm given in Example 12. The central strip still has width
2d but we need to consider just two boxes of size d×d rather
than eight boxes of size (d/2)×(d/2). The recurrence relation
is the same as the recurrence relation in Example 12, except
that the coefficient 7 is replaced by 1. 29. With k = logb n, it
follows that f (n) = akf (1)+∑k−1

j=0a
j c(n/bj )d = akf (1)+

∑k−1
j=0 cnd = akf (1)+ kcnd = alogb nf (1)+ c(logb n)nd =

nlogb af (1) + cnd logb n = ndf (1) + cnd logb n. 31. Let

k = logb n where n is a power of b. Basis step: If n = 1

and k = 0, then c1n
d + c2n

logb a = c1 + c2 = bdc/

(bd − a) + f (1) + bdc/(a − bd) = f (1). Inductive step:

Assume true for k, where n = bk . Then for n = bk+1, f (n) =
af (n/b) + cnd = a{[bdc/(bd − a)](n/b)d + [f (1) + bdc/

(a − bd)] · (n/b)logb a)} + cnd = bdc/(bd − a)nda/bd +
[f (1) + bdc/(a − bd)]nlogb a + cnd = nd [ac/(bd − a) +
c(bd − a)/(bd − a)] + [f (1) + bdc/(a − bdc)]nlogb a =
[bdc/(bd − a)]nd + [f (1) + bdc/(a − bd)]nlogb a . 33. If
a > bd , then logb a > d, so the second term dominates,
giving O(nlogb a). 35. O(nlog4 5) 37. O(n3)

Section 8.4

1. f (x) = 2(x6−1)/(x−1) 3. a) f (x) = 2x(1−x6)/(1−
x) b) x3/(1− x) c) x/(1− x3) d) 2/(1− 2x) e) (1+ x)7

f) 2/(1+x) g) [1/(1−x)]−x2 h) x3/(1−x)2 5. a) 5/(1−x)

b) 1/(1−3x) c) 2x3/(1−x) d) (3−x)/ (1−x)2 e) (1+x)8

7. a) a0 = −64, a1 = 144, a2 = −108, a3 = 27, and an = 0
for all n ≥ 4 b) The only nonzero coefficients are a0 = 1,
a3 = 3, a6 = 3, a9 = 1. c) an = 5n d) an = (−3)n−3 for
n ≥ 3, and a0 = a1 = a2 = 0 e) a0 = 8, a1 = 3, a2 = 2,
an = 0 for odd n greater than 2 and an = 1 for even n greater
than 2 f) an = 1 if n is a positive multiple 4, an = −1 if n < 4,
and an = 0 otherwise g) an = n−1 for n ≥ 2 and a0 = a1 = 0
h) an = 2n+1/n! 9. a) 6 b) 3 c) 9 d) 0 e) 5 11. a) 1024
b) 11 c) 66 d) 292,864 e) 20,412 13. 10 15. 50 17. 20
19. f (x) = 1/[(1 − x)(1 − x2) (1 − x5)(1 − x10)]
21. 15 23. a) x4(1 + x + x2 + x3)2/ (1 − x) b) 6
25. a) The coefficient of xr in the power series expansion of
1/[(1−x3)(1−x4)(1−x20)] b) 1/(1−x3−x4−x20) c) 7
d) 3224 27. a) 3 b) 29 c) 29 d) 242 29. a) 10 b) 49 c) 2
d) 4 31. a) G(x)− a0 − a1x − a2x

2 b) G(x2) c) x4G(x)

d) G(2x) e)
∫ x

0
G(t)dt f) G(x)/(1−x) 33. ak = 2·3k−1

35. ak = 18 ·3k−12 ·2k 37. ak = k2+8k+20+(6k−18)2k

39. Let G(x) =∑∞
k=0 fkx

k . After shifting indices of summa-
tion and adding series, we see that G(x)−xG(x)−x2G(x) =
f0 + (f1 − f0)x + ∑∞

k=2(fk − fk−1 − fk−2)x
k =

0 + x + ∑∞
k=2 0xk . Hence, G(x) − xG(x) − x2G(x) =

x. Solving for G(x) gives G(x) = x/(1 − x − x2).
By the method of partial fractions, it can be shown that
x/(1 − x − x2) = (1/

√
5)[1/(1 − αx) − 1/(1 − βx)],

where α = (1 + √5)/2 and β = (1 − √5)/2. Using the
fact that 1/(1 − αx) = ∑∞

k=0 αkxk , it follows that G(x) =
(1/
√

5) ·∑∞
k=0(α

k−βk)xk . Hence, fk = (1/
√

5) · (αk−βk).
41. a) Let G(x) = ∑∞

n=0 Cnx
n be the generating func-

tion for {Cn}. Then G(x)2 = ∑∞
n=0(

∑n
k=0 CkCn−k) xn =∑∞

n=1 (
∑n−1

k=0 Ck Cn−1−k)x
n−1 = ∑∞

n=1 Cnx
n−1. Hence,

xG(x)2 = ∑∞
n=1 Cnx

n, which implies that xG(x)2 −
G(x) + 1 = 0. Applying the quadratic formula shows that
G(x) = 1±√1−4x

2x
. We choose the minus sign in this for-

mula because the choice of the plus sign leads to a division
by zero. b) By Exercise 40, (1 − 4x)−1/2 =∑∞

n=0

(2n
n

)
xn.

Integrating term by term (which is valid by a theorem from cal-
culus) shows that

∫ x

0 (1−4t)−1/2dt =∑∞
n=0

1
n+1

(2n
n

)
xn+1 =

x
∑∞

n=0
1

n+1

(2n
n

)
xn. Because

∫ x

0 (1−4t)−1/2dt = 1−√1−4x
2 =

xG(x), equating coefficients shows that Cn = 1
n+1

(2n
n

)
.

c) Verify the basis step for n = 1, 2, 3, 4, 5. Assume
the inductive hypothesis that Cj ≥ 2j−1 for 1 ≤ j <

n, where n ≥ 6. Then Cn = ∑n−1
k=0 CkCn−k−1 ≥∑n−2

k=1 CkCn−k−1 ≥ (n− 2)2k−12n−k−2 = (n− 2)2n−1/4 ≥
2n−1. 43. Applying the binomial theorem to the equality
(1 + x)m+n = (1 + x)m(1 + x)n, shows that

∑m+n
r=0 C(m +

n, r)xr= ∑m
r=0 C(m, r)xr · ∑r=0 C(n, r) xr =∑m+n

r=0

[∑r
k=0 C (m, r − k) C (n, k)

]
xr . Comparing coeffi-

cients gives the desired identity. 45. a) 2ex b) e−x c) e3x

d) xex + ex 47. a) an = (−1)n b) an = 3 · 2n
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c) an = 3n − 3 · 2n d) an = (−2)n for n ≥ 2, a1 = −3,
a0 = 2 e) an = (−2)n + n! f) an = (−3)n + n! · 2n

for n ≥ 2, a0 = 1, a1 = −2 g) an = 0 if n is odd and
an = n!/(n/2)! if n is even 49. a) an = 6an−1 + 8n−1

for n ≥ 1, a0 = 1 b) The general solution of the associ-
ated linear homogeneous recurrence relation is a

(h)
n = α6n.

A particular solution is a
(p)
n = 1

2 · 8n. Hence, the general
solution is an = α6n + 1

2 · 8n. Using the initial condition,
it follows that α = 1

2 . Hence, an = (6n + 8n)/2. c) Let
G(x) =∑∞

k=0 akx
k . Using the recurrence relation for {ak}, it

can be shown that G(x)−6xG(x)= (1−7x)/(1−8x). Hence,
G(x) = (1− 7x)/[(1− 6x)(1− 8x)]. Using partial fractions,
it follows that G(x) = (1/2)/(1 − 6x) + (1/2)/(1 − 8x).
With the help of Table 1, it follows that an = (6n + 8n)/2.
51. 1

1−x
· 1

1−x2 · 1
1−x3 · · · 53. (1+ x)(1+ x)2(1+ x)3 · · ·

55. The generating functions obtained in Exercises 52 and 53
are equal because (1+x)(1+x2)(1+x3) · · · = 1−x2

1−x
· 1−x4

1−x2 ·
1−x6

1−x3 · · · = 1
1−x

· 1
1−x3 · 1

1−x5 · · · . 57. a) GX(1) =∑∞
k=0 p(X = k) · 1k = ∑∞

k=0 P(X = k) = 1 b) G′
X(1) =

d
dx

∑∞
k=0 p(X = k)·xk|x=1 =∑∞

k=0 p(X = k)·k·xk−1|x=1 =∑∞
k=0 p(X = k) · k = E(X) c) G′′

X(1) = d2

dx2

∑∞
k=0 p(X =

k) · xk|x=1 = ∑∞
k=0 p(X = k) · k(k − 1) · xk−2|x=1 =∑∞

k=0 p(X = k)·(k2−k)= V (X)+E(X)2−E(X). Combin-
ing this with part (b) gives the desired results. 59. a) G(x)=
pm/(1− qx)m b) V (x) = mq/p2

Section 8.5

1. a) 30 b) 29 c) 24 d) 18 3. 1% 5. a) 300 b) 150 c) 175
d) 100 7. 492 9. 974 11. 55 13. 248 15. 50,138 17. 234
19. |A1 ∪A2 ∪A3 ∪A4 ∪A5| = |A1|+ |A2|+ |A3|+ |A4|+
|A5|−|A1∩A2|−|A1∩A3|−|A1∩A4|−|A1∩A5|−|A2∩
A3|− |A2∩A4|− |A2∩A5|− |A3∩A4|− |A3∩A5|− |A4∩
A5|+|A1∩A2∩A3|+|A1∩A2∩A4|+|A1∩A2∩A5|+|A1∩
A3∩A4|+|A1∩A3∩A5|+|A1∩A4∩A5|+|A2∩A3∩A4|+
|A2∩A3∩A5|+|A2∩A4∩A5|+|A3∩A4∩A5|−|A1∩A2∩
A3∩A4|−|A1∩A2∩A3∩A5|−|A1∩A2∩A4∩A5|−|A1∩
A3∩A4∩A5|−|A2∩A3∩A4∩A5|+|A1∩A2∩A3∩A4∩A5|
21. |A1∪A2∪A3∪A4∪A5∪A6| = |A1|+|A2|+|A3|+|A4|+
|A5|+|A6|−|A1∩A2|−|A1∩A3|−|A1∩A4|−|A1∩A5|−
|A1∩A6|−|A2∩A3|−|A2∩A4|−|A2∩A5|−|A2∩A6|−|A3∩
A4|−|A3∩A5|−|A3∩A6|−|A4∩A5|−|A4∩A6|−|A5∩A6|
23. p(E1 ∪ E2 ∪ E3) = p(E1)+ p(E2)+ p(E3)− p(E1 ∩
E2) − p(E1 ∩ E3) − p(E2 ∩ E3) + p(E1 ∩ E2 ∩ E3)

25. 4972/71,295 27. p(E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) =
p(E1)+ p(E2)+ p(E3)+ p(E4)+ p(E5)− p(E1 ∩E2)−
p(E1∩E3)−p(E1∩E4)−p(E1∩E5)−p(E2∩E3)−p(E2∩
E4)−p(E2∩E5)−p(E3∩E4)−p(E3∩E5)−p(E4∩E5)+
p(E1∩E2∩E3)+p(E1∩E2∩E4)+p(E1∩E2∩E5)+p(E1∩
E3∩E4)+p(E1∩E3∩E5)+p(E1∩E4∩E5)+p(E2∩E3∩
E4)+P(E2∩E3∩E5)+p(E2∩E4∩E5)+p(E3∩E4∩E5)

29. p
(⋃n

i=1 Ei

) =∑1≤i≤np(Ei)−∑1≤i<j≤np(Ei ∩Ej )+∑
1≤i<j<k≤n p(Ei ∩Ej ∩Ek)− · · · + (−1)n+1p

(⋂n
i=1 Ei

)

Section 8.6

1. 75 3. 6 5. 46 7. 9875 9. 540 11. 2100 13. 1854
15. a) D100/100! b) 100D99/100! c) C(100,2)/100!
d) 0 e) 1/100! 17. 2,170,680 19. By Exercise 18 we
have Dn − nDn−1 = −[Dn−1 − (n − 1)Dn−2]. Iterat-
ing, we have Dn − nDn−1 = −[Dn−1−(n−1)Dn−2] =
−[−(Dn−2 − (n − 2)Dn−3)] = Dn−2 − (n − 2)Dn−3 =
· · · = (−1)n(D2 − 2D1) = (−1)n because D2 = 1 and
D1 = 0. 21. When n is odd 23. φ(n) = n −∑m

i=1
n
pi
+

∑
1≤i<j≤m

n
pipj

−· · ·± n
p1p2···pm

= n
∏m

i=1

(
a − 1

pi

)
25. 4

27. There are nm functions from a set with m elements to a
set with n elements, C(n, 1)(n − 1)m functions from a set
with m elements to a set with n elements that miss exactly
one element, C(n, 2)(n − 2)m functions from a set with m

elements to a set with n elements that miss exactly two el-
ements, and so on, with C(n, n − 1) · 1m functions from a
set with m elements to a set with n elements that miss exactly
n−1elements. Hence, by the principle of inclusion–exclusion,
there are nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m − · · · +
(−1)n−1C(n, n− 1) · 1m onto functions.

Supplementary Exercises

1. a) An = 4An−1 b) A1 = 40 c) An = 10 · 4n

3. a) Mn = Mn−1 + 160,000 b) M1 = 186,000 c) Mn =
160,000n + 26,000 d) Tn = Tn−1 + 160,000n + 26,000
e) Tn = 80,000n2 + 106,000n 5. a) an = an−2 + an−3

b) a1 = 0, a2 = 1, a3 = 1 c) a12 = 12 7. a) 2 b) 5 c) 8
d) 16 9. an = 2n 11. an = 2 + 4n/3 + n2/2 + n3/6
13. an = an−2 + an−3 15. a) Under the given conditions,
one longest common subsequence clearly ends at the last term
in each sequence, so am = bn = cp . Furthermore, a longest
common subsequence of what is left of the a-sequence and the
b-sequence after those last terms are deleted has to form the
beginning of a longest common subsequence of the original
sequences. b) If cp �= am, then the longest common subse-
quence’s appearance in the a-sequence must terminate before
the end; therefore the c-sequence must be a longest common
subsequence of a1, a2, . . . , am−1 and b1, b2, . . . , bn. The
other half is similar.
17. procedure howlong(a1, . . . , am, b1, . . . , bn: sequences)

for i := 1 to m

L(i, 0) := 0
for j := 1 to n

L(0, j) := 0
for i := 1 to m

for j := 1 to n

if ai = bj then L(i, j) := L(i − 1, j − 1)+ 1
else L(i, j) := max(L(i, j − 1), L(i − 1, j))

return L(m, n)
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19. f (n) = (4n2−1)/3 21. O(n4) 23. O(n) 25. Using
just two comparisons, the algorithm is able to narrow the
search for m down to the first half or the second half of the
original sequence. Since the length of the sequence is cut in
half each time, only about 2 log2 n comparisons are needed
in all. 27. a) 18n + 18 b) 18 c) 0 29. �(anbn) =
an+1bn+1− anbn = an+1(bn+1 − bn) + bn(an+1 − an) =
an+1�bn + bn�an 31. a) Let G(x) = ∑∞

n=0 anx
n. Then

G′(x) =∑∞
n=1 nanx

n−1 =∑∞
n=0(n+ 1)an+1x

n. Therefore,
G′(x)−G(x)=∑∞

n=0[(n+1)an+1−an]xn =∑n=0 xn/n! =
ex , as desired. That G(0) = a0 = 1 is given. b) We have
[e−xG(x)]′ = e−xG′(x)−e−xG(x) = e−x[G′(x)−G(x)] =
e−x · ex = 1. Hence, e−xG(x) = x+ c, where c is a constant.
Consequently, G(x) = xex + cex . Because G(0) = 1, it
follows that c = 1. c) We have G(x) = ∑∞

n=0 xn+1/n!+∑∞
n=0 xn/n! =∑∞

n=1 xn/(n−1)!+∑∞
n=0 xn/n!. Therefore,

an = 1/(n − 1)! + 1/n! for all n ≥ 1, and a0 = 1. 33. 7
35. 110 37. 0 39. a) 19 b) 65 c) 122 d) 167 e) 168
41. Dn−1/(n− 1)! 43. 11/32

CHAPTER 9

Section 9.1

1. a) {(0, 0), (1, 1), (2, 2), (3, 3)} b) {(1, 3), (2, 2),

(3, 1), (4, 0)} c) {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2),

(4, 0), (4, 1), (4, 2), (4, 3)} d) {(1, 0), (1, 1), (1, 2), (1, 3),

(2, 0), (2, 2), (3, 0), (3, 3), (4, 0)} e) {(0, 1), (1, 0), (1, 1),

(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)}
f) {(1, 2), (2, 1), (2, 2)} 3. a) Transitive b) Reflexive,
symmetric, transitive c) Symmetric d) Antisymmetric
e) Reflexive, symmetric, antisymmetric, transitive
f) None of these properties 5. a) Reflexive, tran-
sitive b) Symmetric c) Symmetric d) Symmetric
7. a) Symmetric b) Symmetric, transitive c) Symmetric
d) Reflexive, symmetric, transitive e) Reflexive, transi-
tive f) Reflexive, symmetric, transitive g) Antisymmetric
h) Antisymmetric, transitive 9. Each of the three properties
is vacuously satisfied. 11. (c), (d), (f) 13. a) Not irreflex-
ive b) Not irreflexive c) Not irreflexive d) Not irreflexive
15. Yes, for instance {(1, 1)} on {1, 2} 17. (a, b) ∈ R

if and only if a is taller than b 19. (a) 21. None
23. ∀a∀b [(a, b) ∈ R → (b, a) /∈ R] 25. 2mn

27. a) {(a, b) | b divides a} b) {(a, b) | a does not divide
b} 29. The graph of f−1 31. a) {(a, b) | a is required to
read or has read b} b) {(a, b) | a is required to read and has
read b} c) {(a, b) | either a is required to read b but has not
read it or a has read b but is not required to} d) {(a, b) | a

is required to read b but has not read it} e) {(a, b) | a has
read b but is not required to} 33. S ◦R = {(a, b) | a is a
parent of b and b has a sibling}, R ◦ S = {(a, b) | a is an aunt

or uncle of b} 35. a) R2 b) R6 c) R3 d) R3 e) ∅ f) R1

g) R4 h) R4 37. a) R1 b) R2 c) R3 d) R2 e) R3 f) R2

g) R2 h) R2 39. b got his or her doctorate under someone
who got his or her doctorate under a; there is a sequence
of n + 1 people, starting with a and ending with b, such
that each is the advisor of the next person in the sequence
41. a) {(a, b) | a − b ≡ 0, 3, 4, 6, , 8, or 9 (mod 12)}
b) {(a, b) | a ≡ b (mod 12)} c) {(a, b) | a − b ≡ 3, 6,

or 9 (mod 12)} d) {(a, b) | a − b ≡ 4 or 8 (mod 12)}
e) {(a, b) | a − b ≡ 3, 4, 6, 8, or 9 (mod 12)} 43. 8
45. a) 65,536 b) 32,768 47. a) 2n(n+1)/2 b) 2n3n(n−1)/2

c) 3n(n−1)/2 d) 2n(n−1) e) 2n(n−1)/2 f) 2n2 − 2 · 2n(n−1)

49. There may be no such b. 51. If R is symmetric and
(a, b) ∈ R, then (b, a) ∈ R, so (a, b) ∈ R−1. Hence,
R ⊆ R−1. Similarly, R−1 ⊆ R. So R = R−1. Conversely, if
R = R−1 and (a, b) ∈ R, then (a, b) ∈ R−1, so (b, a) ∈ R.
Thus R is symmetric. 53. R is reflexive if and only if
(a, a) ∈ R for all a ∈ A if and only if (a, a) ∈ R−1 [because
(a, a) ∈ R if and only if (a, a) ∈ R−1] if and only if R−1 is re-
flexive. 55. Use mathematical induction. The result is trivial
for n = 1. Assume Rn is reflexive and transitive. By Theorem
1, Rn+1 ⊆ R. To see that R ⊆ Rn+1 = Rn ◦R, let (a, b) ∈ R.
By the inductive hypothesis, Rn = R and hence, is reflexive.
Thus (b, b) ∈ Rn. Therefore (a, b) ∈ Rn+1. 57. Use math-
ematical induction. The result is trivial for n = 1. Assume Rn

is reflexive. Then (a, a) ∈ Rn for all a ∈ A and (a, a) ∈ R.
Thus (a, a) ∈ Rn ◦ R = Rn+1 for all a ∈ A. 59. No, for
instance, take R = {(1, 2), (2, 1)}.

Section 9.2

1. {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} 3. (Nadir, 122,
34, Detroit, 08:10), (Acme, 221, 22, Denver, 08:17), (Acme,
122, 33,Anchorage, 08:22), (Acme, 323, 34, Honolulu 08:30),
(Nadir, 199, 13, Detroit, 08:47), (Acme, 222, 22, Denver,
09:10), (Nadir, 322, 34, Detroit, 09:44) 5. Airline and flight
number, airline and departure time 7. a) Yes b) No c) No
9. a) Social Security number b) There are no two people with
the same name who happen to have the same street address.
c) There are no two people with the same name living together.
11. (Nadir, 122, 34, Detroit, 08 : 10), (Nadir, 199, 13, Detroit,
08 : 47), (Nadir, 322, 34, Detroit, 09 : 44) 13. (Nadir, 122,
34, Detroit, 08 : 10), (Nadir, 199, 13, Detroit, 08 : 47), (Nadir,
322, 34, Detroit, 09 : 44), (Acme, 221, 22, Denver, 08 : 17),
(Acme, 222, 22, Denver, 09 : 10) 15. P3.5.6

17. Airline Destination

Nadir Detroit
Acme Denver
Acme Anchorage
Acme Honolulu
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19. Part_ Color_
Supplier number Project Quantity code

23 1092 1 2 2
23 1101 3 1 1
23 9048 4 12 2
31 4975 3 6 2
31 3477 2 25 2
32 6984 4 10 1
32 9191 2 80 4
33 1001 1 14 8

21. Both sides of this equation pick out the subset of R con-
sisting of those n-tuples satisfying both conditions C1 and C2.
23. Both sides of this equation pick out the set of n-tuples
that are in R, are in S, and satisfy condition C. 25. Both
sides of this equation pick out the m-tuples consisting of
i1th, i2th, . . . , imth components of n-tuples in either R or S.
27. Let R = {(a, b)} and S = {(a, c)}, n = 2, m = 1,
and i1 = 1; P1(R − S) = {(a)}, but P1(R) − P1(S) = ∅.
29. a) J2 followed by P1,3 b) (23, 1), (23, 3), (31, 3), (32, 4)

31. There is no primary key.

Section 9.3

1. a)
⎡
⎣

1 1 1
0 0 0
0 0 0

⎤
⎦

b)
⎡
⎣

0 1 0
1 1 0
0 0 1

⎤
⎦

c)
⎡
⎣

1 1 1
0 1 1
0 0 1

⎤
⎦

d)
⎡
⎣

0 0 1
0 0 0
1 0 0

⎤
⎦

3. a) (1, 1), (1, 3), (2, 2), (3, 1), (3, 3) b) (1, 2), (2, 2),
(3, 2) c) (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2),
(3, 3) 5. The relation is irreflexive if and only if the main di-
agonal of the matrix contains only 0s. 7. a) Reflexive, sym-
metric, transitive b) Antisymmetric, transitive c) Symmetric
9. a) 4950 b) 9900 c) 99 d) 100 e) 1 11. Change each 0
to a 1 and each 1 to a 0.

13. a)
⎡
⎣

0 1 1
1 1 0
1 0 1

⎤
⎦

b)
⎡
⎣

1 0 0
0 0 1
0 1 0

⎤
⎦

c)
⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦

15. a)
⎡
⎣

0 0 1
1 1 0
0 1 1

⎤
⎦

b)
⎡
⎣

1 1 0
0 1 1
1 1 1

⎤
⎦

c)
⎡
⎣

0 1 1
1 1 1
1 1 1

⎤
⎦

17. n2 − k

19. a) 1 4

32

b)

32

1 4

c) 1 4

32

d) 1 4

32

21. For simplicity we have indicated pairs of edges between
the same two vertices in opposite directions by using a double
arrowhead, rather than drawing two separate lines.

a)
1 2

43

b)
1 2

43

c)1 2

43

23. {(a, b), (a, c), (b, c), (c, b)} 25. (a, c), (b, a), (c, d),
(d, b) 27. {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a),
(c, b), (d, d)} 29. The relation is asymmetric if and only
if the directed graph has no loops and no closed paths of
length 2. 31. Exercise 23: irreflexive. Exercise 24: reflex-
ive, antisymmetric, transitive. Exercise 25: irreflexive, anti-
symmetric. 33. Reverse the direction on every edge in the
digraph for R. 35. Proof by mathematical induction. Basis
step: Trivial for n = 1. Inductive step: Assume true for k.
Because Rk+1 = Rk ◦ R, its matrix is MR � MRk . By the
inductive hypothesis this is MR �M[k]

R = M[k+1]
R .

Section 9.4

1. a) {(0, 0), (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0), (3, 3)}
b) {(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1),
(2, 2), (3, 0)} 3. {(a, b) | a divides b or b divides a}
5. a b

c d

7. a b

c d

9. a) a b

c d

b) a b

c d

c) a b

c d

11. a) a b

c d

b) a b

c d

c) a b

c d

13. The symmetric closure of R is R ∪ R−1. MR∪R−1 =
MR ∨MR−1 = MR ∨Mt

R . 15. Only when R is irreflexive,
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in which case it is its own closure. 17. a, a, a, a; a, b, e, a;
a, d, e, a; b, c, c, b; b, e, a, b; c, b, c, c; c, c, b, c; c, c, c, c; d,
e, a, d; d, e, e, d; e, a, b, e; e, a, d, e; e, d, e, e; e, e, d, e; e, e,
e, e 19. a) {(1, 1), (1, 5), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4),
(4, 1), (4, 5), (5, 3), (5, 4)} b) {(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 5), (3, 1), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3),
(4, 4), (5, 1), (5, 3), (5, 5)} c) {(1, 1), (1, 3), (1, 4), (1, 5),
(2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),
(4, 1), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)}
d) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4),
(2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3),
(4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} e) {(1, 1),
(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4),
(4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} f) {(1, 1), (1, 2),
(1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1),
(3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} 21. a) If there is a stu-
dent c who shares a class with a and a class with b b) If
there are two students c and d such that a and c share a class,
c and d share a class, and d and b share a class c) If there
is a sequence s0, . . . , sn of students with n ≥ 1 such that
s0 = a, sn = b, and for each i = 1, 2, . . . , n, si and
si−1 share a class 23. The result follows from (R∗)−1 =(⋃∞

n=1 Rn
)−1 =⋃∞

n=1(R
n)−1 =⋃∞

n=1 Rn = R∗.

25. a)
⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

b)
⎡
⎢⎢⎣

0 0 0 0
1 0 1 1
1 0 1 1
1 0 1 1

⎤
⎥⎥⎦

c)
⎡
⎢⎢⎣

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

d)
⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

27. Answers same as for Exercise 25. 29. a) {(1, 1), (1, 2),
(1, 4), (2, 2), (3, 3), (4, 1), (4, 2), (4, 4)} b) {(1, 1),
(1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 3), (4, 1), (4, 2),
(4, 4)} c) {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 3),
(4, 1), (4, 2), (4, 4)} 31. Algorithm 1: O(n3.8); Algorithm
2: O(n3) 33. Initialize with A := MR ∨ In and loop only
for i := 2 to n − 1. 35. a) Because R is reflexive, every
relation containing it must also be reflexive. b) Both {(0, 0),
(0, 1), (0, 2), (1, 1), (2, 2)} and {(0, 0), (0, 1), (1, 0), (1, 1),
(2, 2)} contain R and have an odd number of elements, but
neither is a subset of the other.

Section 9.5

1. a) Equivalence relation b) Not reflexive, not transitive
c) Equivalence relation d) Not transitive e) Not symme- tric,
not transitive 3. a) Equivalence relation b) Not transitive
c) Not reflexive, not symmetric, not transitive d) Equivalence
relation e) Not reflexive, not transitive 5. Many answers
are possible. (1) Two buildings are equivalent if they were

opened during the same year; an equivalence class consists of
the set of buildings opened in a given year (as long as there
was at least one building opened that year). (2) Two build-
ings are equivalent if they have the same number of stories;
the equivalence classes are the set of 1-story buildings, the
set of 2-story buildings, and so on (one class for each n for
which there is at least one n-story building). (3) Every build-
ing in which you have a class is equivalent to every building in
which you have a class (including itself), and every building
in which you don’t have a class is equivalent to every building
in which you don’t have a class (including itself); there are
two equivalence classes—the set of buildings in which you
have a class and the set of buildings in which you don’t have a
class (assuming these are nonempty). 7. The statement “p
is equivalent to q" means that p and q have the same entries
in their truth tables. R is reflexive, because p has the same
truth table as p. R is symmetric, for if p and q have the same
truth table, then q and p have the same truth table. If p and q

have the same entries in their truth tables and q and r have the
same entries in their truth tables, then p and r also do, so R is
transitive. The equivalence class of T is the set of all tautolo-
gies; the equivalence class of F is the set of all contradictions.
9. a) (x, x) ∈ R because f (x) = f (x). Hence, R is reflexive.
(x, y) ∈ R if and only if f (x) = f (y), which holds if and
only if f (y) = f (x) if and only if (y, x) ∈ R. Hence, R is
symmetric. If (x, y) ∈ R and (y, z) ∈ R, then f (x) = f (y)

and f (y) = f (z). Hence, f (x) = f (z). Thus, (x, z) ∈ R.
It follows that R is transitive. b) The sets f−1(b) for b in
the range of f 11. Let x be a bit string of length 3 or more.
Because x agrees with itself in the first three bits, (x, x) ∈ R.
Hence, R is reflexive. Suppose that (x, y) ∈ R. Then x and y

agree in the first three bits. Hence, y and x agree in the first
three bits. Thus, (y, x) ∈ R. If (x, y) and (y, z) are in R, then
x and y agree in the first three bits, as do y and z. Hence, x

and z agree in the first three bits. Hence, (x, z) ∈ R. It follows
that R is transitive. 13. This follows from Exercise 9, where
f is the function that takes a bit string of length 3 or more to
the ordered pair with its first bit as the first component and
the third bit as its second component. 15. For reflexivity,
((a, b), (a, b)) ∈ R because a + b = b+ a. For symmetry, if
((a, b), (c, d)) ∈ R, then a + d = b + c, so c + b = d + a,
so ((c, d), (a, b)) ∈ R. For transitivity, if ((a, b), (c, d)) ∈ R

and ((c, d), (e, f )) ∈ R, then a+d = b+c and c+e = d+f ,
so a + d + c + e = b + c + d + f , so a + e = b + f ,
so ((a, b), (e, f )) ∈ R. An easier solution is to note that by
algebra, the given condition is the same as the condition that
f ((a, b)) = f ((c, d)), where f ((x, y)) = x−y; therefore by
Exercise 9 this is an equivalence relation. 17. a) This fol-
lows from Exercise 9, where the function f from the set of
differentiable functions (from R to R) to the set of functions
(from R to R) is the differentiation operator. b) The set of all
functions of the form g(x) = x2 + C for some constant C

19. This follows from Exercise 9, where the function f from
the set of all URLs to the set of all Web pages is the func-
tion that assigns to each URL the Web page for that URL.
21. No 23. No 25. R is reflexive because a bit string s
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has the same number of 1s as itself. R is symmetric because
s and t having the same number of 1s implies that t and s do.
R is transitive because s and t having the same number of 1s,
and t and u having the same number of 1s implies that s and
u have the same number of 1s. 27. a) The sets of people of
the same age b) The sets of people with the same two parents
29. The set of all bit strings with exactly two 1s. 31. a) The
set of all bit strings of length 3 b) The set of all bit strings
of length 4 that end with a 1 c) The set of all bit strings of
length 5 that end 11 d) The set of all bit strings of length 8
that end 10101 33. Each of the 15 bit strings of length less
than four is in an equivalence class by itself: [λ]R4 = {λ},
[0]R4 = {0}, [1]R4 = {1}, [00]R4 = {00}, [01]R4 = {01},
…, [111]R4 = {111}. The remaining 16 equivalence classes
are determined by the bit strings of length 4: [0000]R4 =
{0000, 00000, 00001, 000000, 000001, 000010, 000011,

0000000, . . .}, [0001]R4 = {0001, 00010, 00011, 000100,

000101, 000110, 000111, 0001000, . . .}, …, [1111]R4 =
{1111, 11110, 11111, 111100, 111101, 111110, 111111,

1111000, . . .} 35. a) [2]5 = {i | i≡2 (mod 5)} =
{. . . ,−8,−3, 2, 7, 12, . . .} b) [3]5 = {i | i ≡ 3 (mod 5)} =
{. . . ,−7,−2, 3, 8, 13, . . .} c) [6]5 = {i | i ≡ 6 (mod 5)} =
{. . . , −9, −4, 1, 6, 11, . . .} d) [−3]5 = {i | i ≡ −3
(mod 5)} = {. . . ,−8,−3, 2, 7, 12, . . .} 37. {6n+k | n ∈ Z}
for k ∈ {0, 1, 2, 3, 4, 5} 39. a) [(1, 2)] = {(a, b) | a − b =
−1} = {(1, 2), (3, 4), (4, 5), (5, 6), . . .} b) Each equiva-
lence class can be interpreted as an integer (negative, positive,
or zero); specifically, [(a, b)] can be interpreted as a − b.
41. a) No b) Yes c) Yes d) No 43. (a), (c), (e) 45. (b), (d),
(e) 47. a) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4),

(3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} b) {(0, 0),

(0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4),

(4, 5), (5, 4), (5, 5)} c) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),

(1, 2), (2, 0), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3),
(4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} d) {(0, 0), (1, 1), (2, 2),

(3, 3), (4, 4), (5, 5)} 49. [0]6 ⊆ [0]3, [1]6 ⊆ [1]3,
[2]6 ⊆ [2]3, [3]6 ⊆ [0]3, [4]6 ⊆ [1]3, [5]6 ⊆ [2]3 51. Let
A be a set in the first partition. Pick a particular element x

of A. The set of all bit strings of length 16 that agree with x on
the last four bits is one of the sets in the second partition, and
clearly every string in A is in that set. 53. We claim that each
equivalence class [x]R31 is a subset of the equivalence class
[x]R8 . To show this, choose an arbitrary element y ∈ [x]R31 .
Then y is equivalent to x under R31, so either y = x or y and x

are each at least 31 characters long and agree on their first 31
characters. Because strings that are at least 31 characters long
and agree on their first 31 characters perforce are at least 8
characters long and agree on their first 8 characters, we know
that either y = x or y and x are each at least 8 characters
long and agree on their first 8 characters. This means that y is
equivalent to x under R8, so y ∈ [x]R8 . 55. {(a, a), (a, b),
(a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d), (d, e),
(e, d), (e, e)} 57. a) Z b) {n + 1

2 | n ∈ Z} 59. a) R is
reflexive because any coloring can be obtained from itself via
a 360-degree rotation. To see that R is symmetric and tran-
sitive, use the fact that each rotation is the composition of

two reflections and conversely the composition of two reflec-
tions is a rotation. Hence, (C1, C2) belongs to R if and only
if C2 can be obtained from C1 by a composition of reflec-
tions. So if (C1, C2) belongs to R, so does (C2, C1) because
the inverse of the composition of reflections is also a com-
position of reflections (in the opposite order). Hence, R is
symmetric. To see that R is transitive, suppose (C1, C2) and
(C2, C3) belong to R. Taking the composition of the reflec-
tions in each case yields a composition of reflections, showing
that (C1, C3) belongs to R. b) We express colorings with se-
quences of length four, with r and b denoting red and blue,
respectively. We list letters denoting the colors of the upper
left square, upper right square, lower left square, and lower
right square, in that order. The equivalence classes are: {rrrr},
{bbbb}, {rrrb, rrbr, rbrr, brrr}, {bbbr, bbrb, brbb, rbbb},
{rbbr, brrb}, {rrbb, brbr, bbrr, rbrb}. 61. 5 63. Yes
65. R 67. First form the reflexive closure of R, then form
the symmetric closure of the reflexive closure, and finally
form the transitive closure of the symmetric closure of the
reflexive closure. 69. p(0) = 1, p(1) = 1, p(2) = 2,
p(3) = 5, p(4) = 15, p(5) = 52, p(6) = 203, p(7) = 877,
p(8) = 4140, p(9) = 21147, p(10) = 115975

Section 9.6

1. a) Is a partial ordering b) Not antisymmetric, not transitive
c) Is a partial ordering d) Is a partial ordering e) Not anti-
symmetric, not transitive 3. a) No b) No c) Yes 5. a) Yes
b) No c) Yes d) No 7. a) No b) Yes c) No 9. No
11. Yes 13. a) {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}
b) (Z, ≤) c) (P (Z), ⊆) d) (Z+, “is a multiple of”)
15. a) {0} and {1}, for instance b) 4 and 6, for instance
17. a) (1, 1, 2) < (1, 2, 1) b) (0, 1, 2, 3) < (0, 1, 3, 2)

c) (0, 1, 1, 1, 0) < (1, 0, 1, 0, 1) 19. 0 < 0001 < 001 <

01 < 010 < 0101 < 011 < 11

21. 15
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23. a) 8
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c) 48

24

12

6

32

1

36

d) 64

32

16

8

4

2

1

25. (a, b), (a, c), (a, d), (b, c), (b, d), (a, a), (b, b), (c, c),
(d, d) 27. (a, a), (a, g), (a, d), (a, e), (a, f ), (b, b), (b, g),
(b, d), (b, e), (b, f ), (c, c), (c, g), (c, d), (c, e), (c, f ), (g, d),
(g, e), (g, f ), (g, g), (d, d), (e, e), (f, f ) 29. (∅, {a}),
(∅, {b}), (∅, {c}), ({a}, {a, b}), ({a}, {a, c}), ({b}, {a, b}),
({b}, {b, c}), ({c}, {a, c}), ({c}, {b, c}), ({a, b}, {a, b, c}),
({a, c}, {a, b, c})({b, c}, {a, b, c}) 31. Let (S, � ) be a fi-
nite poset. We will show that this poset is the reflexive transi-
tive closure of its covering relation. Suppose that (a, b) is in
the reflexive transitive closure of the covering relation. Then
a = b or a ≺ b, so a � b, or else there is a sequence
a1, a2, . . . , an such that a ≺ a1 ≺ a2 ≺ · · · ≺ an ≺ b, in
which case again a � b by the transitivity of � . Conversely,
suppose that a ≺ b. If a = b then (a, b) is in the reflex-
ive transitive closure of the covering relation. If a ≺ b and
there is no z such that a ≺ z ≺ b, then (a, b) is in the cov-
ering relation and therefore in its reflexive transitive closure.
Otherwise, let a ≺ a1 ≺ a2 ≺ · · · ≺ an ≺ b be a longest
possible sequence of this form (which exists because the poset
is finite). Then no intermediate elements can be inserted, so
each pair (a, a1), (a1, a2), . . . , (an, b) is in the covering re-
lation, so again (a, b) is in its reflexive transitive closure.
33. a) 24, 45 b) 3, 5 c) No d) No e) 15, 45 f) 15 g) 15,
5, 3 h) 15 35. a) {1, 2}, {1, 3, 4}, {2, 3, 4} b) {1}, {2}, {4}
c) No d) No e) {2, 4}, {2, 3, 4} f) {2, 4} g) {3, 4}, {4}
h) {3, 4} 37. Because (a, b)� (a, b), � is reflexive. If
(a1, a2) � (b1, b2) and (a1, a2) �= (b1, b2), either a1 ≺ b1, or
a1 = b1 and a2 ≺ b2. In either case, (b1, b2) is not less than or
equal to (a1, a2). Hence, � is antisymmetric. Suppose that
(a1, a2) ≺ (b1, b2) ≺ (c1, c2). Then if a1 ≺ b1 or b1 ≺ c1,
we have a1 ≺ c1, so (a1, a2) ≺ (c1, c2), but if a1 = b1 = c1,
then a2 ≺ b2 ≺ c2, which implies that (a1, a2) ≺ (c1, c2).
Hence, � is transitive. 39. Because (s, t) � (s, t), � is re-
flexive. If (s, t) � (u, v) and (u, v) � (s, t), then s � u � s

and t � v � t ; hence, s = u and t = v. Hence, � is
antisymmetric. Suppose that (s, t) � (u, v) � (w, x). Then
s � u, t � v, u � w, and v � x. It follows that s � w
and t � x. Hence, (s, t) � (w, x). Hence, � is transitive.
41. a) Suppose that x is maximal and that y is the largest
element. Then x � y. Because x is not less than y, it fol-
lows that x = y. By Exercise 40(a) y is unique. Hence, x is
unique. b) Suppose that x is minimal and that y is the small-
est element. Then x � y. Because x is not greater than y, it

follows that x = y. By Exercise 40(b) y is unique. Hence, x is
unique. 43. a) Yes b) No c) Yes 45. Use mathematical
induction. Let P(n) be “Every subset with n elements from a
lattice has a least upper bound and a greatest lower bound.”
Basis step: P(1) is true because the least upper bound and
greatest lower bound of {x} are both x. Inductive step: As-
sume that P(k) is true. Let S be a set with k + 1 elements.
Let x ∈ S and S′ = S − {x}. Because S′ has k elements,
by the inductive hypothesis, it has a least upper bound y and
a greatest lower bound a. Now because we are in a lattice,
there are elements z = lub(x, y) and b = glb(x, a). We
are done if we can show that z is the least upper bound of
S and b is the greatest lower bound of S. To show that z is
the least upper bound of S, first note that if w ∈ S, then
w = x or w ∈ S′. If w = x then w � z because z is the
least upper bound of x and y. If w ∈ S′, then w � z be-
cause w � y, which is true because y is the least upper bound
of S′, and y � z, which is true because z = lub(x, y). To
see that z is the least upper bound of S, suppose that u is an
upper bound of S. Note that such an element u must be an
upper bound of x and y, but because z = lub(x, y), it follows
that z � u. We omit the similar argument that b is the great-
est lower bound of S. 47. a) No b) Yes c) (Proprietary,
{Cheetah, Puma}), (Restricted, {Cheetah, Puma}), (Reg-
istered, {Cheetah, Puma}), (Proprietary, {Cheetah, Puma,
Impala}), (Restricted, {Cheetah, Puma, Impala}), (Registered,
{Cheetah, Puma, Impala}) d) (Non- proprietary, {Impala,
Puma}), (Proprietary, {Impala, Puma}), (Restricted, {Impala,
Puma}), (Nonproprietary, {Impala}), (Proprietary, {Impala}),
(Restricted, {Impala}), (Nonproprietary, {Puma}), (Propri-
etary, {Puma}), (Restricted, {Puma}), (Nonproprietary, ∅),
(Proprietary, ∅), (Restricted, ∅) 49. Let  be the set of all
partitions of a set S with P1 � P2 if P1 is a refinement of P2,
that is, if every set in P1 is a subset of a set in P2. First, we show
that (, � ) is a poset. Because P � P for every partition P ,
� is reflexive. Now suppose that P1 � P2 and P2 � P1. Let
T ∈ P1. Because P1 � P2, there is a set T ′ ∈ P2 such that
T ⊆ T ′. Because P2 � P1 there is a set T ′′ ∈ P1 such that
T ′ ⊆ T ′′. It follows that T ⊆ T ′′. But because P1 is a partition,
T = T ′′, which implies that T = T ′ because T ⊆ T ′ ⊆ T ′′.
Thus, T ∈ P2. By reversing the roles of P1 and P2 it follows
that every set in P2 is also in P1. Hence, P1 = P2 and � is
antisymmetric. Next, suppose that P1 � P2 and P2 � P3. Let
T ∈ P1. Then there is a set T ′ ∈ P2 such that T ⊆ T ′. Because
P2 � P3 there is a set T ′′ ∈ P3 such that T ′ ⊆ T ′′. This means
that T ⊆ T ′′. Hence, P1 � P3. It follows that � is transitive.
The greatest lower bound of the partitions P1 and P2 is the
partition P whose subsets are the nonempty sets of the form
T1 ∩ T2 where T1 ∈ P1 and T2 ∈ P2. We omit the justification
of this statement here. The least upper bound of the partitions
P1 and P2 is the partition that corresponds to the equivalence
relation in which x ∈ S is related to y ∈ S if there is a
sequence x = x0, x1, x2, . . . , xn = y for some nonnegative
integer n such that for each i from 1 to n, xi−1 and xi are in the
same element of P1 or of P2. We omit the details that this is
an equivalence relation and the details of the proof that this is
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the least upper bound of the two partitions. 51. By Exercise
45 there is a least upper bound and a greatest lower bound for
the entire finite lattice. By definition these elements are the
greatest and least elements, respectively. 53. The least ele-
ment of a subset of Z+ ×Z+ is that pair that has the smallest
possible first coordinate, and, if there is more than one such
pair, that pair among those that has the smallest second co-
ordinate. 55. If x is an integer in a decreasing sequence of
elements of this poset, then at most |x| elements can follow x

in the sequence, namely, integers whose absolute values are
|x| − 1, |x| − 2, …, 1, 0. Therefore there can be no infinite
decreasing sequence. This is not a totally ordered set, because
5 and−5, for example, are incomparable. 57. To find which
of two rational numbers is larger, write them with a positive
common denominator and compare numerators. To show that
this set is dense, suppose that x < y are two rational num-
bers. Then their average, i.e., (x + y)/2, is a rational number
between them. 59. Let (S, �) be a partially ordered set. It
is enough to show that every nonempty subset of S contains a
least element if and only if there is no infinite decreasing se-
quence of elements a1, a2, a3, . . . in S (i.e., where ai+1 ≺ ai

for all i). An infinite decreasing sequence of elements clearly
has no least element. Conversely, let A be any nonempty sub-
set of S that has no least element. Because A is nonempty,
choose a1 ∈ A. Because a1 is not the least element of A,
choose a2 ∈ A with a2 ≺ a1. Because a2 is not the least
element of A, choose a3 ∈ A with a3 ≺ a2. Continue in
this manner, producing an infinite decreasing sequence in S.
61. a ≺t b ≺t c ≺t d ≺t e ≺t f ≺t g ≺t h ≺t i ≺t

j ≺t k ≺t l ≺t m 63. 1 ≺ 5 ≺ 2 ≺ 4 ≺ 12 ≺ 20,
1 ≺ 2 ≺ 5 ≺ 4 ≺ 12 ≺ 20, 1 ≺ 2 ≺ 4 ≺ 5 ≺ 12 ≺ 20,
1 ≺ 2 ≺ 4 ≺ 12 ≺ 5 ≺ 20, 1 ≺ 5 ≺ 2 ≺ 4 ≺ 20 ≺ 12,
1 ≺ 2 ≺ 5 ≺ 4 ≺ 20 ≺ 12, 1 ≺ 2 ≺ 4 ≺ 5 ≺ 20 ≺ 12
65. A ≺ C ≺ E ≺ B ≺ D ≺ F ≺ G, A ≺ E ≺ C ≺
B ≺ D ≺ F ≺ G, C ≺ A ≺ E ≺ B ≺ D ≺ F ≺ G,
C ≺ E ≺ A ≺ B ≺ D ≺ F ≺ G, E ≺ A ≺ C ≺ B ≺
D ≺ F ≺ G, E ≺ C ≺ A ≺ B ≺ D ≺ F ≺ G, A ≺ C ≺
B ≺ E ≺ D ≺ F ≺ G, C ≺ A ≺ B ≺ E ≺ D ≺ F ≺ G,
A ≺ C ≺ B ≺ D ≺ E ≺ F ≺ G, C ≺ A ≺ B ≺
D ≺ E ≺ F ≺ G, A ≺ C ≺ E ≺ B ≺ F ≺ D ≺ G,
A ≺ E ≺ C ≺ B ≺ F ≺ D ≺ G, C ≺ A ≺ E ≺
B ≺ F ≺ D ≺ G, C ≺ E ≺ A ≺ B ≺ F ≺ D ≺ G,
E ≺ A ≺ C ≺ B ≺ F ≺ D ≺ G, E ≺ C ≺ A ≺
B ≺ F ≺ D ≺ G, A ≺ C ≺ B ≺ E ≺ F ≺ D ≺ G,
C ≺ A ≺ B ≺ E ≺ F ≺ D ≺ G 67. Determine user
needs ≺Write functional requirements ≺ Set up test sites ≺
Develop system requirements ≺Write documentation ≺ De-
velop module A ≺ Develop module B ≺ Develop module
C ≺ Integrate modules ≺ α test ≺ β test ≺ Completion

Supplementary Exercises

1. a) Irreflexive (we do not include the empty string), symmet-
ric b) Irreflexive, symmetric c) Irreflexive, antisymmetric,

transitive 3. ((a, b), (a, b)) ∈ R because a + b = a + b.
Hence, R is reflexive. If ((a, b), (c, d)) ∈ R then a+d = b+c,
so that c + b = d + a. It follows that ((c, d), (a, b)) ∈ R.
Hence, R is symmetric. Suppose that ((a, b), (c, d)) and
((c, d), (e, f )) belong to R. Then a + d = b + c and
c + f = d + e. Adding these two equations and sub-
tracting c + d from both sides gives a + f = b + e.
Hence, ((a, b), (e, f )) belongs to R. Hence, R is transitive.
5. Suppose that (a, b) ∈ R. Because (b, b) ∈ R it follows that
(a, b) ∈ R2. 7. Yes, yes 9. Yes, yes 11. Two records
with identical keys in the projection would have identical keys
in the original. 13. (� ∪ R)−1 = �−1 ∪ R−1 = � ∪ R−1

15. a) R = {(a, b), (a, c)}. The transitive closure of the
symmetric closure of R is {(a, a), (a, b), (a, c), (b, a),
(b, b), (b, c), (c, a), (c, b), (c, c)} and is different from the
symmetric closure of the transitive closure of R, which is
{(a, b), (a, c), (b, a), (c, a)}. b) Suppose that (a, b) is in
the symmetric closure of the transitive closure of R. We must
show that (a, b) is in the transitive closure of the symmetric
closure of R. We know that at least one of (a, b) and (b, a)

is in the transitive closure of R. Hence, there is either a path
from a to b in R or a path from b to a in R (or both). In the
former case, there is a path from a to b in the symmetric clo-
sure of R. In the latter case, we can form a path from a to b

in the symmetric closure of R by reversing the directions of
all the edges in a path from b to a, going backward. Hence,
(a, b) is in the transitive closure of the symmetric closure of R.
17. The closure of S with respect to property P is a relation
with property P that contains R because R ⊆ S. Hence, the
closure of S with respect to property P contains the closure
of R with respect to property P. 19. Use the basic idea of
Warshall’s algorithm, except let w[k]ij equal the length of the
longest path from vi to vj using interior vertices with sub-
scripts not exceeding k, and equal to −1 if there is no such
path. To find w[k]ij from the entries of Wk−1, determine for each
pair (i, j) whether there are paths from vi to vk and from vk

to vj using no vertices labeled greater than k. If either w[k−1]
ik

or w[k−1]
kj is −1, then such a pair of paths does not exist, so

set w[k]ij = w[k−1]
ij . If such a pair of paths exists, then there are

two possibilities. If w[k−1]
kk > 0, there are paths of arbitrary

long length from vi to vj , so set w[k]ij = ∞. If w[k−1]
kk = 0,

set w[k−1]
ij = max(w[k−1]

ij , w[k−1]
ik + w[k−1]

kj ). (Initially take
W0 = MR .) 21. 25 23. Because Ai ∩ Bj is a subset of
Ai and of Bj , the collection of subsets is a refinement of each
of the given partitions. We must show that it is a partition. By
construction, each of these sets is nonempty. To see that their
union is S, suppose that s ∈ S. Because P1 and P2 are parti-
tions of S, there are sets Ai and Bj such that s ∈ Ai and s ∈ Bj .
Therefore s ∈ Ai ∩Bj . Hence, the union of these sets is S. To
see that they are pairwise disjoint, note that unless i = i′ and
j = j ′, (Ai∩Bj )∩(Ai′ ∩Bj ′) = (Ai∩Ai′)∩(Bj ∩Bj ′) = ∅.
25. The subset relation is a partial ordering on any collection
of sets, because it is reflexive, antisymmetric, and transitive.
Here the collection of sets is R(S). 27. Find recipe ≺ Buy
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seafood ≺ Buy groceries ≺Wash shellfish ≺ Cut ginger and
garlic ≺ Clean fish ≺ Steam rice ≺ Cut fish ≺ Wash veg-
etables ≺ Chop water chestnuts ≺ Make garnishes ≺ Cook
in wok ≺ Arrange on platter ≺ Serve 29. a) The only an-
tichain with more than one element is {c, d}. b) The only
antichains with more than one element are {b, c}, {c, e}, and
{d, e}. c) The only antichains with more than one element
are {a, b}, {a, c}, {b, c}, {a, b, c}, {d, e}, {d, f }, {e, f }, and
{d, e, f }. 31. Let (S, � ) be a finite poset, and let A be a
maximal chain. Because (A, � ) is also a poset it must have
a minimal element m. Suppose that m is not minimal in S.
Then there would be an element a of S with a ≺ m. How-
ever, this would make the set A ∪ {a} a larger chain than A.
To show this, we must show that a is comparable with every
element of A. Because m is comparable with every element
of A and m is minimal, it follows that m ≺ x when x is in
A and x �= m. Because a ≺ m and m ≺ x, the transitive
law shows that a ≺ x for every element of A. 33. Let aRb

denote that a is a descendant of b. By Exercise 32, if no set
of n + 1 people none of whom is a descendant of any other
(an antichain) exists, then k ≤ n, so the set can be partitioned
into k ≤ n chains. By the pigeonhole principle, at least one of
these chains contains at least m+1 people. 35. We prove by
contradiction that if S has no infinite decreasing sequence and
∀x ({∀y[y ≺ x → P(y)]} → P(x)

)
, then P(x) is true for all

x ∈ S. If it does not hold that P(x) is true for all x ∈ S, let
x1 be an element of S such that P(x1) is not true. Then by
the conditional statement already given, it must be the case
that ∀y[y ≺ x1 → P(y)] is not true. This means that there
is some x2 with x2 ≺ x1 such that P(x2) is not true. Again
invoking the conditional statement, we get an x3 ≺ x2 such
that P(x3) is not true, and so on forever. This contradicts the
well-foundedness of our poset. Therefore, P(x) is true for all
x ∈ S. 37. Suppose that R is a quasi-ordering. Because R

is reflexive, if a ∈ A, then (a, a) ∈ R. This implies that
(a, a) ∈ R−1. Hence, a ∈ R∩R−1. It follows that R∩R−1 is
reflexive. R ∩ R−1 is symmetric for any relation R because,
for any relation R, if (a, b) ∈ R then (b, a) ∈ R−1 and
vice versa. To show that R ∩ R−1 is transitive, suppose that
(a, b) ∈ R ∩R−1 and (b, c) ∈ R ∩R−1. Because (a, b) ∈ R

and (b, c) ∈ R, (a, c) ∈ R, because R is transitive. Simi-
larly, because (a, b) ∈ R−1 and (b, c) ∈ R−1, (b, a) ∈ R

and (c, b) ∈ R, so (c, a) ∈ R and (a, c) ∈ R−1. Hence,
(a, c) ∈ R ∩ R−1. It follows that R ∩ R−1 is an equiva-
lence relation. 39. a) Because glb(x, y) = glb(y, x) and
lub(x, y) = lub(y, x), it follows that x ∧ y = y ∧ x and
x ∨ y = y ∨ x. b) Using the definition, (x ∧ y) ∧ z is
a lower bound of x, y, and z that is greater than every other
lower bound. Because x, y, and z play interchangeable roles,
x ∧ (y ∧ z) is the same element. Similarly, (x ∨ y) ∨ z is
an upper bound of x, y, and z that is less than every other
upper bound. Because x, y, and z play interchangeable roles,
x∨(y∨z) is the same element. c) To show that x∧(x∨y) = x

it is sufficient to show that x is the greatest lower bound of
x, and x ∨ y. Note that x is a lower bound of x, and be-
cause x ∨ y is by definition greater than x, x is a lower bound
for it as well. Therefore, x is a lower bound. But any lower

bound of x has to be less than x, so x is the greatest lower
bound. The second statement is the dual of the first; we omit
its proof. d) x is a lower, and an upper, bound for itself and it-
self, and the greatest, and least, such bound. 41. a) Because
1 is the only element greater than or equal to 1, it is the only
upper bound for 1 and therefore the only possible value of
the least upper bound of x and 1. b) Because x � 1, x is a
lower bound for both x and 1 and no other lower bound can
be greater than x, so x ∧ 1 = x. c) Because 0 � x, x is
an upper bound for both x and 0 and no other bound can be
less than x, so x ∨ 0 = x. d) Because 0 is the only element
less than or equal to 0, it is the only lower bound for 0 and
therefore the only possible value of the greatest lower bound
of x and 0. 43. L = (S,⊆) where S = {∅, {1}, {2}, {3},
{1, 2}, {2, 3}, {1, 2, 3}} 45. Yes 47. The complement of a
subset X ⊆ S is its complement S − X. To prove this, note
that X ∨ (S − X) = 1 and X ∧ (S − X) = 0 because
X ∪ (S − X) = S and X ∩ (S − X) = ∅. 49. Think of the
rectangular grid as representing elements in a matrix. Thus we
number from top to bottom and within that from left to right.
The partial order is that (a, b)  (c, d) iff a ≤ c and b ≤ d.
Note that (1, 1) is the least element under this relation. The
rules for Chomp as explained in Chapter 1 coincide with the
rules stated in the preamble here. But now we can identify the
point (a, b) with the natural number pa−1qb−1 for all a and b

with 1 ≤ a ≤ m and 1 ≤ b ≤ n. This identifies the points in
the rectangular grid with the set S in this exercise, and the par-
tial order  just described is the same as the divides relation,
because pa−1qb−1 | pc−1qd−1 if and only if the exponent of
p on the left does not exceed the exponent of p on the right,
and similarly for q.

CHAPTER 10

Section 10.1

1. a)
Detroit

Boston

Newark

Miami

Washington

b)
Detroit

Boston

Newark

Miami

Washington
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c)
Detroit

Boston

Newark

Miami

Washington

d)
Detroit

Boston

Newark

Miami

Washington

e)
Detroit

Boston

Newark

Miami

Washington

3. Simple graph 5. Pseudograph 7. Directed graph
9. Directed multigraph 11. If uRv, then there is an edge
associated with {u, v}. But {u, v} = {v, u}, so this edge is
associated with {v, u} and therefore vRu. Thus, by definition,
R is a symmetric relation. A simple graph does not allow
loops; therefore, uRu never holds, and so by definition R is
irreflexive.

13. a) A1

A5 A3

A4

A2

b) A1

A5 A3

A4

A2

c)

A3A6

A4A5

A1 A2

15.
Hermit thrush Robin

Hairy
woodpecker

NuthatchMockingbird Blue jay

17.

Lamé

Gauss

Stirling

Dodgson

Boole

Lovelace

De Morgan

Fermat

Mersenne

Descartes

Goldbach

Bézout

Aristotle Euclid Eratosthenes

Fibonacci Maurolico

al-Khowarizmi

19. President

Chief financial
officer

Director,
operations

Director,
R and D

Director,
marketing

21. Tigers Blue jays

Orioles Cardinals

23. We find the telephone numbers in the call graph for Febru-
ary that are not present in the call graph for January and vice
versa. For each number we find, we make a list of the num-
bers they called or were called by using the edges in the call
graph. We examine these lists to find new telephone num-
bers in February that had similar calling patterns to defunct
telephone numbers in January. 25. We use the graph model
that has e-mail addresses as vertices and for each message
sent, an edge from the e-mail address of the sender to the
e-mail address of the recipient. For each e-mail address, we
can make a list of other addresses they sent messages to and
a list of other addresses from which they received messages.
If two e-mail addresses had almost the same pattern, we con-
clude that these addresses might have belonged to the same
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person who had recently changed his or her e-mail address.
27. Let V be the set of people at the party. Let E be the set
of ordered pairs (u, v) in V × V such that u knows v’s name.
The edges are directed, but multiple edges are not allowed.
Literally, there is a loop at each vertex, but for simplicity, the
model could omit the loops. 29. Vertices are the courses;
edges are directed; edge uv means that course u is prerequisite
for course v; courses without prerequisites are vertices with
in-degree 0; courses that are not prerequisite for any other
courses are vertices with out-degree 0. 31. Let the set of
vertices be a set of people, and two vertices are joined by an
edge if the two people were ever married. Ignoring complica-
tions, this graph has the property that there are two types of
vertices (men and women), and every edge joins vertices of
opposite types.

33.

S5

S2

S1 S7S3

S6

S4

35. Represent people in the group by vertices. Put a directed
edge into the graph for every pair of vertices. Label the edge
from the vertex representing A to the vertex representing B

with a + (plus) if A likes B, a − (minus) if A dislikes B, and
a 0 if A is neutral about B.

Section 10.2

1. v = 6; e = 6; deg(a) = 2, deg(b) = 4, deg(c) = 1,
deg(d) = 0, deg(e) = 2, deg(f ) = 3; c is pendant; d is
isolated. 3. v = 9; e = 12; deg(a) = 3, deg(b) = 2,
deg(c) = 4, deg(d) = 0, deg(e) = 6, deg(f ) = 0;
deg(g) = 4; deg(h) = 2; deg(i) = 3; d and f are isolated.
5. No 7. v = 4; e = 7; deg−(a) = 3, deg−(b) = 1,
deg−(c) = 2, deg−(d) = 1, deg+(a) = 1, deg+(b) = 2,
deg+(c) = 1, deg+(d) = 3 9. 5 vertices, 13 edges;
deg−(a) = 6, deg+(a) = 1, deg−(b) = 1, deg+(b) = 5,
deg−(c) = 2, deg+(c) = 5, deg−(d) = 4, deg+(d) = 2,
deg−(e) = 0, deg+(e) = 0

11.
a b c

fde

13. The number of coauthors that person has; that per-
son’s coauthors; a person who has no coauthors; a per-
son who has only one coauthor 15. In the directed graph
deg−(v) = number of calls v received, deg+(v) = number of

calls v made; in the undirected graph, deg(v) is the number of
calls either made or received by v. 17. (deg+(v), deg−(v))
is the win–loss record of v. 19. In the undirected graph
model in which the vertices are people in the group and
two vertices are adjacent if those two people are friends,
the degree of a vertex is the number of friends in the
group that person has. By Exercise 18, there are two ver-
tices with the same degree, which means that there are two
people in the group with the same number of friends in
the group. 21. Bipartite 23. Not bipartite 25. Not bi-
partite 27. a) Parts {h, s, n, w} and {P, Q, R, S}, E =
{{P, n}, {P, w}, {Q, s}, {Q, n}, {R, n}, {R, w}, {S, h}, {S, s}}
b) There is. c) {P w, Qs, Rn, Sh} among others 29. Only
Barry is willing to marry Uma and Xia. 31. Model this with
an undirected bipartite graph, with an edge between a man
and a woman if they are willing to marry each other. By Hall’s
theorem, it is enough to show that for every set S of women,
the set N(S) of men willing to marry them has cardinality
at least |S|. Let m be the number of edges between S and
N(S). Since every vertex in S has degree k, it follows that
m = k|S|. Because these edges are incident to N(S), it follows
that m ≤ k|N(S)|. Therefore k|S| ≤ k|N(S)|, so |N(S)| ≥
|S|. 33. a) ({a, b, c, f }, {{a, b}, {a, f }, {b, c}, {b, f }})
b) ({a, x, c, f }, {{a, x}, {c, x}, {e, x}}) 35. a) n vertices,
n(n−1)/2 edges b) n vertices, n edges c) n+1 vertices, 2n

edges d) m+n vertices, mn edges e) 2n vertices, n2n−1 edges
37. a) 3, 3, 3, 3 b) 2, 2, 2, 2 c) 4, 3, 3, 3, 3 d) 3, 3, 2, 2, 2
e) 3, 3, 3, 3, 3, 3, 3, 3 39. Each of the n vertices is adjacent
to each of the other n − 1 vertices, so the degree sequence is
n− 1, n− 1, . . . , n− 1 (n terms).

41. 7

43. a) Yes

b) No c) No d) No

e) Yes

f) No. 45. First, suppose that d1, d2, . . . , dn is graphic. We
must show that the sequence whose terms are d2−1, d3−1,…,
dd1+1−1, dd1+2, dd1+3,…, dn is graphic once it is put into non-
increasing order. In Exercise 44 it is proved that if the original
sequence is graphic, then in fact there is a graph having this
degree sequence in which the vertex of degree d1 is adjacent
to the vertices of degrees d2, d3,…, dd1+1. Remove from this
graph the vertex of highest degree (d1). The resulting graph
has the desired degree sequence. Conversely, suppose that d1,
d2,…, dn is a nonincreasing sequence such that the sequence
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d2 − 1, d3 − 1,…, dd1+1 − 1, dd1+2, dd1+3,…, dn is graphic
once it is put into nonincreasing order. Take a graph with this
latter degree sequence, where vertex vi has degree di − 1 for
2 ≤ i ≤ d1+1 and vertex vi has degree di for d1+2 ≤ i ≤ n.
Adjoin one new vertex (call it v1), and put in an edge from v1

to each of the vertices v2, v3,…, vd1+1. The resulting graph
has degree sequence d1, d2,…, dn. 47. Let d1, d2,…, dn be a
nonincreasing sequence of nonnegative integers with an even
sum. Construct a graph as follows: Take vertices v1, v2,…, vn

and put �di/2� loops at vertex vi , for i = 1, 2, . . . , n. For
each i, vertex vi now has degree either di or di − 1. Because
the original sum was even, the number of vertices for which
deg(vi ) = di − 1 is even. Pair them up arbitrarily, and put in
an edge joining the vertices in each pair. 49. 17

51. a

c d

b a

c d

b a

c d

b a

c d

b

a

c d

ba

c d

ba

c d

ba

c d

b

a

c

b a

c

b a

c

b

a

d

ba

d

ba

d

ba

d

b

a

c d

a

c d

a

c d

a

c d
a

c

a ba b

c d

b

a

c

a

d

a

d c

b

ba

c dd

b

c d

a

c

b

53. a) For all n ≥ 1 b) For all n ≥ 3 c) For n = 3 d) For
all n ≥ 0 55. 5

57. a f b

c g d

e

59. a) The graph with n vertices and no edges b) The disjoint
union of Km and Kn c) The graph with vertices {v1, . . . , vn}

with an edge between vi and vj unless i ≡ j ± 1 (mod n)

d) The graph whose vertices are represented by bit strings of
length n with an edge between two vertices if the associated
bit strings differ in more than one bit 61. v(v − 1)/2 − e

63. n − 1 − dn, n − 1 − dn−1,…, n − 1 − d2, n − 1 − d1

65. The union of G and G contains an edge between each pair
of the n vertices. Hence, this union is Kn.
67. Exercise 7: b

c

d

e
a

Exercise 8:

a e

d

cb

Exercise 9:

b

c

de

f

a

69. A directed graph G = (V , E) is its own converse if and
only if it satisfies the condition (u, v) ∈ E if and only if
(v, u) ∈ E. But this is precisely the condition that the associ-
ated relation must satisfy to be symmetric.

71. P(0, 0) P(0, 1) P(0, 2)

P(1, 0) P(1, 1) P(1, 2)

P(2, 0) P(2, 1) P(2, 2)

73. We can connect P(i, j) and P(k, l) by using |i − k| hops
to connect P(i, j) and P(k, j) and |j − l| hops to connect
P(k, j) and P(k, l). Hence, the total number of hops required
to connect P(i, j) and P(k, l) does not exceed |i−k|+|j−l|.
This is less than or equal to m+m = 2m, which is O(m).

Section 10.3

1. Adjacent
Vertex Vertices

a b, c, d

b a, d

c a, d

d a, b, c

3. Terminal
Vertex Vertices

a a, b, c, d

b d

c a, b

d b, c, d

5.
⎡
⎢⎢⎣

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

⎤
⎥⎥⎦

7.
⎡
⎢⎢⎣

1 1 1 1
0 0 0 1
1 1 0 0
0 1 1 1

⎤
⎥⎥⎦

9. a)
⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦
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b)
⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦

c)
⎡
⎢⎢⎢⎢⎣

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦

d)
⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦

e) ⎡
⎢⎢⎢⎢⎣

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

f)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

11. d b

a c

13. ⎡
⎢⎢⎣

0 0 1 0
0 0 1 2
1 1 0 1
0 2 1 0

⎤
⎥⎥⎦

15.
⎡
⎢⎢⎣

1 0 2 1
0 1 1 2
2 1 1 0
1 2 0 1

⎤
⎥⎥⎦

17. a b

d c

19.
⎡
⎢⎢⎣

0 1 0 0
0 1 1 0
0 1 1 1
1 0 0 0

⎤
⎥⎥⎦

21.
⎡
⎢⎢⎣

1 1 2 1
1 0 0 2
1 0 1 1
0 2 1 0

⎤
⎥⎥⎦

23.
a

c
b

25. Yes

27. Exercise 13: ⎡
⎢⎢⎣

1 0 0 0 0
0 1 1 1 0
1 1 0 0 1
0 0 1 1 1

⎤
⎥⎥⎦

Exercise 14: ⎡
⎢⎢⎣

1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1

⎤
⎥⎥⎦

Exercise 15: ⎡
⎢⎢⎣

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 1 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 1 0 1

⎤
⎥⎥⎦

29. deg(v)− number of loops at v; deg−(v) 31. 2 if e is not
a loop, 1 if e is a loop

33. a)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 · · · 0
1 0 · · · 0 1 · · · 0
0 1 · · · 0 1 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 1
0 0 · · · 1 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

b)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 1
1 1 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0
0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

c)
⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1 1 · · · 1
1 0 · · · 0

B 0 1 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

where B is the answer to (b)

d)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 · · · 0
0 0 · · · 0 1 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 1
1 0 · · · 0 1 · · · 0
0 1 · · · 0 0 · · · 1
...

...
...

...
...

0 0 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

35. Isomorphic 37. Isomorphic 39. Isomorphic 41. Not
isomorphic 43. Isomorphic 45. G is isomorphic to itself
by the identity function, so isomorphism is reflexive. Suppose
that G is isomorphic to H . Then there exists a one-to-one
correspondence f from G to H that preserves adjacency and
nonadjacency. It follows that f−1 is a one-to-one correspon-
dence from H to G that preserves adjacency and nonadja-
cency. Hence, isomorphism is symmetric. If G is isomorphic
to H and H is isomorphic to K , then there are one-to-one
correspondences f and g from G to H and from H to K that
preserve adjacency and nonadjacency. It follows that g ◦ f is
a one-to-one correspondence from G to K that preserves ad-
jacency and nonadjacency. Hence, isomorphism is transitive.
47. All zeros 49. Label the vertices in order so that all of the
vertices in the first set of the partition of the vertex set come
first. Because no edges join vertices in the same set of the par-
tition, the matrix has the desired form. 51. C5 53. n = 5
only 55. 4 57. a) Yes b) No c) No 59. G = (V1, E1)

is isomorphic to H = (V2, E2) if and only if there exist func-
tions f from V1 to V2 and g from E1 to E2 such that each is
a one-to-one correspondence and for every edge e in E1 the
endpoints of g(e) are f (v) and f (w) where v and w are the
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endpoints of e. 61. Yes 63. Yes 65. If f is an isomor-
phism from a directed graph G to a directed graph H , then f

is also an isomorphism from Gconv to Hconv. To see this note
that (u, v) is an edge of Gconv if and only if (v, u) is an edge
of G if and only if (f (v), f (u)) is an edge of H if and only
if (f (u), f (v)) is an edge of Hconv. 67. Many answers are
possible; for example, C6 and C3 ∪ C3. 69. The product is
[aij ] where aij is the number of edges from vi to vj when
i �= j and aii is the number of edges incident to vi . 71. The
graphs in Exercise 41 provide a devil’s pair.

Section 10.4

1. a) Path of length 4; not a circuit; not simple b) Not a path
c) Not a path d) Simple circuit of length 5 3. No 5. No
7. Maximal sets of people with the property that for any two
of them, we can find a string of acquaintances that takes us
from one to the other 9. If a person has Erdős number n,
then there is a path of length n from that person to Erdős in
the collaboration graph, so by definition, that means that that
person is in the same component as Erdős. If a person is in the
same component as Erdős, then there is a path from that person
to Erdős, and the length of the shortest such path is that per-
son’s Erdős number. 11. a) Weakly connected b) Weakly
connected c) Not strongly or weakly connected 13. The
maximal sets of phone numbers for which it is possible to
find directed paths between every two different numbers in
the set 15. a) {a, b, f }, {c, d, e} b) {a, b, c, d, e, h}, {f },
{g} c) {a, b, d, e, f, g, h, i}, {c} 17. Suppose the strong
components of u and v are not disjoint, say with vertex w in
both. Suppose x is a vertex in the strong component of u.
Then x is also in the strong component of v, because there
is a path from x to v (namely the path from x to u fol-
lowed by the path from u to w followed by the path from
w to v) and vice versa. Thus x is in the strong component
of v. This shows that the strong component of u is a sub-
graph of the strong component of v, and equality follows by
symmetry. 19. a) 2 b) 7 c) 20 d) 61 21. Not isomor-
phic (G has a triangle; H does not) 23. Isomorphic (the
path u1, u2, u7, u6, u5, u4, u3, u8, u1 corresponds to the path
v1, v2, v3, v4, v5, v8, v7, v6, v1) 25. a) 3 b) 0 c) 27 d) 0
27. a) 1 b) 0 c) 2 d) 1 e) 5 f) 3 29. R is reflexive by
definition. Assume that (u, v) ∈ R; then there is a path from
u to v. Then (v, u) ∈ R because there is a path from v to
u, namely, the path from u to v traversed backward. Assume
that (u, v) ∈ R and (v, w) ∈ R; then there are paths from u

to v and from v to w. Putting these two paths together gives
a path from u to w. Hence, (u, w) ∈ R. It follows that R is
transitive. 31. c 33. b, c, e, i 35. If a vertex is pendant
it is clearly not a cut vertex. So an endpoint of a cut edge that
is a cut vertex is not pendant. Removal of a cut edge produces
a graph with more connected components than in the original
graph. If an endpoint of a cut edge is not pendant, the con-
nected component it is in after the removal of the cut edge
contains more than just this vertex. Consequently, removal of
that vertex and all edges incident to it, including the original

cut edge, produces a graph with more connected components
than were in the original graph. Hence, an endpoint of a cut
edge that is not pendant is a cut vertex. 37. Assume there
exists a connected graph G with at most one vertex that is not
a cut vertex. Define the distance between the vertices u and
v, denoted by d(u, v), to be the length of the shortest path
between u and v in G. Let s and t be vertices in G such that
d(s, t) is a maximum. Either s or t (or both) is a cut vertex,
so without loss of generality suppose that s is a cut vertex.
Let w belong to the connected component that does not con-
tain t of the graph obtained by deleting s and all edges inci-
dent to s from G. Because every path from w to t contains s,
d(w, t) > d(s, t), which is a contradiction. 39. a) Denver–
Chicago, Boston–New York b) Seattle–Portland, Portland–
San Francisco, Salt Lake City–Denver, New York–Boston,
Boston–Burlington, Boston–Bangor 41. A minimal set of
people who collectively influence everyone (directly or indi-
rectly); {Deborah} 43. An edge cannot connect two vertices
in different connected components. Because there are at most
C(ni, 2) edges in the connected component with ni vertices,
it follows that there are at most

∑k
i=1 C(ni, 2) edges in the

graph. 45. Suppose that G is not connected. Then it has a
component of k vertices for some k, 1 ≤ k ≤ n − 1.
The most edges G could have is C(k, 2) + C(n − k, 2) =
[k(k − 1)+ (n− k)(n− k − 1)]/2 = k2 − nk + (n2 − n)/2.
This quadratic function of f is minimized at k = n/2 and
maximized at k = 1 or k = n − 1. Hence, if G is not
connected, the number of edges does not exceed the value of
this function at 1 and at n − 1, namely, (n − 1)(n − 2)/2.
47. a) 1 b) 2 c) 6 d) 21 49. a) Removing an edge from a
cycle leaves a path, which is still connected. b) Removing an
edge from the cycle portion of the wheel leaves that portion
still connected and the central vertex still connected to it as
well. Removing a spoke leaves the cycle intact and the central
vertex still connected to it as well. c) Any four vertices, two
from each part of the bipartition, are connected by a 4-cycle;
removing one edge does not disconnect them. d) Deleting
the edge joining (b1, b2, . . . , bi−1, 0, bi+1, . . . , bn)

and (b1, b2, . . . , bi−1, 1, bi+1, . . . , bn) does not dis-
connect the graph because these two vertices are still
joined via the path (b1, b2, . . . , bi−1, 0, bi+1, . . . , 0),
(b1, b2, . . . , bi−1, 0, bi+1, . . . , 1), (b1, b2, . . . , bi−1, 1,

bi+1, . . . , 1), (b1, b2, . . . , bi−1, 1, bi+1, . . . , 0) if n < 2
and bn = 0, and similarly in the other three cases. 51. If
G is complete, then removing vertices one by one leaves a
complete graph at each step, so we never get a disconnected
graph. Conversely, if edge uv is missing from G, then remov-
ing all the vertices except u and v creates a disconnected graph.
53. Both equal min(m, n). 55. Let G be a graph with n ver-
tices; then κ(G) ≤ n−1. Let C be a smallest edge cut, leaving
a nonempty proper subset S of the vertices of G disconnected
from the complementary set S′ = V −S. If xy is an edge of G

for every x ∈ S and y ∈ S′, then the size of C is |S||S′|, which
is at least n − 1, so κ(G) ≤ λ(G). Otherwise, let x ∈ S and
y ∈ S′ be nonadjacent vertices. Let T consist of all neighbors
of x in S′ together with all vertices of S − {x} with neighbors
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in S′. Then T is a vertex cut, because it separates x and y.
Now look at the edges from x to T ∩ S′ and one edge from
each vertex of T ∩S to S′; this gives us |T | distinct edges that
lie in C, so λ(G) = |C| ≥ |T | ≥ κ(G). 57. 2 59. Let
the simple paths P1 and P2 be u = x0, x1, . . . , xn = v and
u = y0, y1, . . . , ym = v, respectively. The paths thus start out
at the same vertex. Since the paths do not contain the same set
of edges, they must diverge eventually. If they diverge only
after one of them has ended, then the rest of the other path is
a simple circuit from v to v. Otherwise we can suppose that
x0 = y0, x1 = y1, …, xi = yi , but xi+1 �= yi+1. To form our
simple circuit, we follow the path yi , yi+1, yi+2, and so on,
until it once again first encounters a vertex on P1 (possibly as
early as yi+1, no later than ym). Once we are back on P1, we
follow it along—forwards or backwards, as necessary—to re-
turn to xi . Since xi = yi , this certainly forms a circuit. It must
be a simple circuit, since no edge among the xks or the yls
can be repeated (P1 and P2 are simple by hypothesis) and no
edge among the xks can equal one of the edges yl that we used,
since we abandoned P2 for P1 as soon as we hit P1. 61. The
graph G is connected if and only if every off-diagonal entry of
A+A2+A3+· · ·+An−1 is positive, whereA is the adjacency
matrix of G. 63. If the graph is bipartite, say with parts A

and B, then the vertices in every path must alternately lie in
A and B. Therefore a path that starts in A, say, will end in B

after an odd number of steps and in A after an even number of
steps. Because a circuit ends at the same vertex where it starts,
the length must be even. Conversely, suppose that all circuits
have even length; we must show that the graph is bipartite.
We can assume that the graph is connected, because if it is
not, then we can just work on one component at a time. Let
v be a vertex of the graph, and let A be the set of all vertices
to which there is a path of odd length starting at v, and let
B be the set of all vertices to which there is a path of even
length starting at v. Because the component is connected, ev-
ery vertex lies in A or B. No vertex can lie in both A and B,
because if one did, then following the odd-length path from v
to that vertex and then back along the even-length path from
that vertex to v would produce an odd circuit, contrary to the
hypothesis. Thus, the set of vertices has been partitioned into
two sets. To show that every edge has endpoints in different
parts, suppose that xy is an edge, where x ∈ A. Then the
odd-length path from v to x followed by xy produces an even-
length path from v to y, so y ∈ B. (Similarly, if x ∈ B.)
65. (H1W1H2W2〈boat〉, ∅) → (H2W2, H1W1〈boat〉) →
(H1H2W2〈boat〉, W1) → (W2, H1W1H2〈boat〉) →
(H2W2〈boat〉, H1W1) → (∅, H1W1H2W2〈boat〉)

Section 10.5

1. Neither 3. No Euler circuit; a, e, c, e, b, e, d, b, a, c, d

5. a, b, c, d, c, e, d, b, e, a, e, a 7. a, i, h, g, d, e, f, g, c, e, h, d,
c, a, b, i, c, b, h, a 9. No, A still has odd degree. 11. When
the graph in which vertices represent intersections and edges

streets has an Euler path 13. Yes 15. No 17. If there is
an Euler path, then as we follow it each vertex except the
starting and ending vertices must have equal in-degree and
out-degree, because whenever we come to a vertex along an
edge, we leave it along another edge. The starting vertex must
have out-degree 1 larger than its in-degree, because we use
one edge leading out of this vertex and whenever we visit
it again we use one edge leading into it and one leaving it.
Similarly, the ending vertex must have in-degree 1 greater
than its out-degree. Because the Euler path with directions
erased produces a path between any two vertices, in the un-
derlying undirected graph, the graph is weakly connected.
Conversely, suppose the graph meets the degree conditions
stated. If we add one more edge from the vertex of deficient
out-degree to the vertex of deficient in-degree, then the graph
has every vertex with equal in-degree and out-degree. Be-
cause the graph is still weakly connected, by Exercise 16 this
new graph has an Euler circuit. Now delete the added edge to
obtain the Euler path. 19. Neither 21. No Euler circuit;
a, d, e, d, b, a, e, c, e, b, c, b, e 23. Neither 25. Follow
the same procedure as Algorithm 1, taking care to follow the
directions of edges. 27. a) n = 2 b) None c) None
d) n = 1 29. Exercise 1:1 time; Exercises 2–7: 0 times
31. a, b, c, d, e, a is a Hamilton circuit. 33. No Hamilton
circuit exists, because once a purported circuit has reached e

it would have nowhere to go. 35. No Hamilton circuit ex-
ists, because every edge in the graph is incident to a vertex of
degree 2 and therefore must be in the circuit. 37. a, b, c, f,
d, e is a Hamilton path. 39. f, e, d, a, b, c is a Hamilton path.
41. No Hamilton path exists. There are eight vertices of degree
2, and only two of them can be end vertices of a path. For each
of the other six, their two incident edges must be in the path. It
is not hard to see that if there is to be a Hamilton path, exactly
one of the inside corner vertices must be an end, and that this
is impossible. 43. a, b, c, f, i, h, g, d, e is a Hamilton path.
45. m = n ≥ 2 47. a) (i) No, (ii) No, (iii) Yes b) (i) No,
(ii) No, (iii)Yes c) (i)Yes, (ii)Yes, (iii)Yes d) (i)Yes, (ii)Yes,
(iii) Yes 49. The result is trivial for n = 1: code is 0, 1. As-
sume we have a Gray code of order n. Let c1, . . . , ck, k = 2n

be such a code. Then 0c1, . . . , 0ck, 1ck, . . . , 1c1 is a Gray
code of order n+ 1.

51. procedure Fleury(G = (V , E): connected multigraph
with the degrees of all vertices even, V = {v1, . . . , vn})

v := v1

circuit := v
H := G

while H has edges
e := first edge with endpoint v in H (with respect
to listing of V ) such that e is not a cut edge of H , if
one exists, and simply the first edge in H with
endpoint v otherwise
w := other endpoint of e

circuit := circuit with e, w added
v := w
H := H − e

return circuit {circuit is an Euler circuit}
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53. If G has an Euler circuit, then it also has an Euler path.
If not, add an edge between the two vertices of odd degree
and apply the algorithm to get an Euler circuit. Then delete
the new edge. 55. Suppose G = (V , E) is a bipartite graph
with V = V1 ∪ V2, where V1 ∩ V2 = ∅ and no edge
connects a vertex in V1 and a vertex in V2. Suppose that G
has a Hamilton circuit. Such a circuit must be of the form
a1, b1, a2, b2, . . . , ak, bk, a1, where ai ∈ V1 and bi ∈ V2

for i = 1, 2, . . . , k. Because the Hamilton circuit visits each
vertex exactly once, except for v1, where it begins and ends,
the number of vertices in the graph equals 2k, an even num-
ber. Hence, a bipartite graph with an odd number of vertices
cannot have a Hamilton circuit.

57. 1 2 3 4

5 6 7

9 10 11

8

12

59. We represent the squares of a 3×4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

A knight’s tour can be made by following the moves 8, 10, 1,
7, 9, 2, 11, 5, 3, 12, 6, 4. 61. We represent the squares of a
4× 4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

There are only two moves from each of the four corner squares.
If we include all the edges 1–10, 1–7, 16–10, and 16–7, a cir-
cuit is completed too soon, so at least one of these edges must
be missing. Without loss of generality, assume the path starts
1–10, 10–16, 16–7. Now the only moves from square 3 are
to squares 5, 10, and 12, and square 10 already has two inci-
dent edges. Therefore, 3–5 and 3–12 must be in the Hamilton
circuit. Similarly, edges 8–2 and 8–15 must be in the circuit.
Now the only moves from square 9 are to squares 2, 7, and
15. If there were edges from square 9 to both squares 2 and
15, a circuit would be completed too soon. Therefore the edge
9–7 must be in the circuit giving square 7 its full complement

of edges. But now square 14 is forced to be joined to squares
5 and 12, completing a circuit too soon (5–14–12–3–5). This
contradiction shows that there is no knight’s tour on the 4× 4
board. 63. Because there are mn squares on an m×n board,
if both m and n are odd, there are an odd number of squares.
Because by Exercise 62 the corresponding graph is bipartite,
by Exercise 55 it has no Hamilton circuit. Hence, there is no
reentrant knight’s tour. 65. a) If G does not have a Hamil-
ton circuit, continue as long as possible adding missing edges
one at a time in such a way that we do not obtain a graph
with a Hamilton circuit. This cannot go on forever, because
once we’ve formed the complete graph by adding all miss-
ing edges, there is a Hamilton circuit. Whenever the process
stops, we have obtained a (necessarily noncomplete) graph H

with the desired property. b) Add one more edge to H . This
produces a Hamilton circuit, which uses the added edge. The
path consisting of this circuit with the added edge omitted is
a Hamilton path in H . c) Clearly v1 and vn are not adjacent
in H , because H has no Hamilton circuit. Therefore they are
not adjacent in G. But the hypothesis was that the sum of
the degrees of vertices not adjacent in G was at least n. This
inequality can be rewritten as n − deg(vn) ≤ deg(v1). But
n− deg(vn) is just the number of vertices not adjacent to vn.
d) Because there is no vertex following vn in the Hamilton
path, vn is not in S. Each one of the deg(v1) vertices adjacent
to v1 gives rise to an element of S, so S contains deg(v1) ver-
tices. e) By part (c) there are at most deg(v1)−1 vertices other
than vn not adjacent to vn, and by part (d) there are deg(v1)

vertices in S, none of which is vn. Therefore at least one vertex
of S is adjacent to vn. By definition, if vk is this vertex, then H

contains edges vkvn and v1vk+1, where 1 < k < n−1. f) Now
v1, v2, . . . , vk−1, vk, vn, vn−1, . . . , vk+1, v1 is a Hamilton cir-
cuit in H , contradicting the construction of H . Therefore, our
assumption that G did not originally have a Hamilton circuit
is wrong, and our proof by contradiction is complete.

Section 10.6

1. a) Vertices are the stops, edges join adjacent stops, weights
are the times required to travel between adjacent stops.
b) Same as part (a), except weights are distances between ad-
jacent stops. c) Same as part (a), except weights are fares
between stops. 3. 16 5. Exercise 2: a, b, e, d, z; Ex-
ercise 3: a, c, d, e, g, z; Exercise 4: a, b, e, h, l, m, p, s, z
7. a) a, c, d b) a, c, d, f c) c, d, f e) b, d, e, g, z 9. a) Direct
b) Via NewYork c) ViaAtlanta and Chicago d) Via NewYork
11. a) Via Chicago b) Via Chicago c) Via LosAngeles d) Via
Chicago 13. a) Via Chicago b) Via Chicago c) Via LosAn-
geles d) Via Chicago 15. Do not stop the algorithm when
z is added to the set S. 17. a) Via Woodbridge, via Wood-
bridge and Camden b) Via Woodbridge, via Woodbridge and
Camden 19. For instance, sightseeing tours, street cleaning
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21. a b c d e z

a 4 3 2 8 10 13
b 3 2 1 5 7 10
c 2 1 2 6 8 11
d 8 5 6 4 2 5
e 10 7 8 2 4 3
z 13 10 11 5 3 6

23. O(n3) 25. a–c–b–d–a (or the same circuit starting at
some other point and/or traversing the vertices in reverse
order) 27. San Francisco–Denver–Detroit–New York–Los
Angeles–San Francisco (or the same circuit starting at some
other point and/or traversing the vertices in reverse order)
29. Consider this graph:

a

b c
100

1 2

The circuit a-b-a-c-a visits each vertex at least once (and the
vertex a twice) and has total weight 6. Every Hamilton circuit
has total weight 103. 31. Let v1, v2, . . . , vn be a topological
ordering of the vertices of the given directed acyclic graph. Let
w(i, j) be the weight of edge vivj . Iteratively define P(i) with
the intent that it will be the weight of a longest path ending at
vi and C(i) with the intent that it will be the vertex preceding
vi in some longest path: For i from 1 to n, let P(i) be the
maximum of P(j) + w(j, i) over all j < i such that vj vi is
an edge in the directed graph (and if such a j exists let C(i)

be a value of j for which this maximum is achieved) and let
P(i) = 0 if there are no such values of j . At the conclusion
of this loop, a longest path can be found by choosing i that
maximizes P(i) and following the C links back to the start of
the path.

Section 10.7

1. Yes 3. b

a d

c

e

5. No

7. Yes a d

e

c f

b

9. No 11. A triangle is formed by the planar representation
of the subgraph of K5 consisting of the edges connecting v1,
v2, and v3. The vertex v4 must be placed either within the tri-
angle or outside of it. We will consider only the case when
v4 is inside the triangle; the other case is similar. Drawing the

three edges from v1, v2, and v3 to v4 forms four regions. No
matter which of these four regions v5 is in, it is possible to
join it to only three, and not all four, of the other vertices.
13. 8 15. Because there are no loops or multiple edges and
no simple circuits of length 3, and the degree of the unbounded
region is at least 4, each region has degree at least 4. Thus
2e ≥ 4r , or r ≤ e/2. But r = e − v + 2, so we have
e − v + 2 ≤ e/2, which implies that e ≤ 2v − 4. 17. As in
the argument in the proof of Corollary 1, we have 2e ≥ 5r and
r = e− v+ 2. Thus e− v+ 2 ≤ 2e/5, which implies that e ≤
(5/3)v−(10/3). 19. Only (a) and (c) 21. Not homeomor-
phic to K3,3 23. Planar 25. Nonplanar 27. a) 1 b) 3
c) 9 d) 2 e) 4 f) 16 29. Draw Km,n as described in the
hint. The number of crossings is four times the number in
the first quadrant. The vertices on the x-axis to the right of
the origin are (1, 0), (2, 0), . . . , (m/2, 0) and the vertices on
the y-axis above the origin are (0, 1), (0, 2), . . . , (0, n/2).
We obtain all crossings by choosing any two numbers a and
b with 1 ≤ a < b ≤ m/2 and two numbers r and s

with 1 ≤ r < s ≤ n/2; we get exactly one crossing
in the graph between the edge connecting (a, 0) and (0, s)

and the edge connecting (b, 0) and (0, r). Hence, the number
of crossings in the first quadrant is C

(
m
2 , 2

) · C
(

n
2 , 2

) =
(m/2)(m/2−1)

2 · (n/2)(n/2−1)
2 . Hence, the total number of cross-

ings is 4 · mn(m − 2)(n − 2)/64 = mn(m − 2)(n − 2)/16.
31. a) 2 b) 2 c) 2 d) 2 e) 2 f) 2 33. The formula is valid
for n ≤ 4. If n > 4, by Exercise 32 the thickness of Kn is
at least C(n, 2)/(3n − 6) = (n + 1 + 2

n−2 )/6 rounded up.
Because this quantity is never an integer, it equals �(n+7)/6�.
35. This follows from Exercise 34 because Km,n has mn edges
and m+n vertices and has no triangles because it is bipartite.

37.

Section 10.8

1. Four colors

A

B

D

C
E

3. Three colors
A

F
B

C

D

E

5. 3 7. 3 9. 2 11. 3 13. Graphs with no edges 15. 3
if n is even, 4 if n is odd 17. Period 1: Math 115, Math 185;
period 2: Math 116, CS 473; period 3: Math 195, CS 101;
period 4: CS 102; period 5: CS 273 19. 5 21. Exercise 5:
3 Exercise 6: 6 Exercise 7: 3 Exercise 8: 4 Exercise 9: 3
Exercise 10: 6 Exercise 11: 4 23. a) 2 if n is even, 3 if n is
odd b) n 25. Two edges that have the same color share no
endpoints. Therefore if more than n/2 edges were colored the
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same, the graph would have more than 2(n/2) = n vertices.
27. 5 29. Color 1: e, f, d; color 2: c, a, i, g; color 3: h, b, j
31. Color C6 33. Four colors are needed to color Wn when
n is an odd integer greater than 1, because three colors are
needed for the rim (see Example 4), and the center vertex, be-
ing adjacent to all the rim vertices, will require a fourth color.
To see that the graph obtained from Wn by deleting one edge
can be colored with three colors, consider two cases. If we
remove a rim edge, then we can color the rim with two colors,
by starting at an endpoint of the removed edge and using the
colors alternately around the portion of the rim that remains.
The third color is then assigned to the center vertex. If we
remove a spoke edge, then we can color the rim by assigning
color #1 to the rim endpoint of the removed edge and colors
#2 and #3 alternately to the remaining vertices on the rim,
and then assign color #1 to the center. 35. Suppose that G

is chromatically k-critical but has a vertex v of degree k − 2
or less. Remove from G one of the edges incident to v. By
definition of “k-critical,” the resulting graph can be colored
with k − 1 colors. Now restore the missing edge and use this
coloring for all vertices except v. Because we had a proper
coloring of the smaller graph, no two adjacent vertices have
the same color. Furthermore, v has at most k−2 neighbors, so
we can color v with an unused color to obtain a proper (k−1)-
coloring of G. This contradicts the fact that G has chromatic
number k. Therefore, our assumption was wrong, and every
vertex of G must have degree at least k − 1. 37. a) 6 b) 7
c) 9 d) 11 39. Represent frequencies by colors and zones
by vertices. Join two vertices with an edge if the zones these
vertices represent interfere with one another. Then a k-tuple
coloring is precisely an assignment of frequencies that avoids
interference. 41. We use induction on the number of ver-
tices of the graph. Every graph with five or fewer vertices can
be colored with five or fewer colors, because each vertex can
get a different color. That takes care of the basis case(s). So
we assume that all graphs with k vertices can be 5-colored
and consider a graph G with k+ 1 vertices. By Corollary 2 in
Section 10.7, G has a vertex v with degree at most 5. Remove
v to form the graph G′. Because G′ has only k vertices, we
5-color it by the inductive hypothesis. If the neighbors of v
do not use all five colors, then we can 5-color G by assigning
to v a color not used by any of its neighbors. The difficulty
arises if v has five neighbors, and each has a different color in
the 5-coloring of G′. Suppose that the neighbors of v, when
considered in clockwise order around v, are a, b, c, m, and p.
(This order is determined by the clockwise order of the curves
representing the edges incident to v.) Suppose that the colors
of the neighbors are azure, blue, chartreuse, magenta, and pur-
ple, respectively. Consider the azure-chartreuse subgraph (i.e.,
the vertices in G colored azure or chartreuse and all the edges
between them). If a and c are not in the same component of
this graph, then in the component containing a we can inter-
change these two colors (make the azure vertices chartreuse
and vice versa), and G′ will still be properly colored. That
makes a chartreuse, so we can now color v azure, and G has
been properly colored. If a and c are in the same component,

then there is a path of vertices alternately colored azure and
chartreuse joining a and c. This path together with edges av
and vc divides the plane into two regions, with b in one of them
and m in the other. If we now interchange blue and magenta
on all the vertices in the same region as b, we will still have a
proper coloring of G′, but now blue is available for v. In this
case, too, we have found a proper coloring of G. This com-
pletes the inductive step, and the theorem is proved. 43. We
follow the hint. Because the measures of the interior angles of
a pentagon total 540◦, there cannot be as many as three inte-
rior angles of measure more than 180◦ (reflex angles). If there
are no reflex angles, then the pentagon is convex, and a guard
placed at any vertex can see all points. If there is one reflex
angle, then the pentagon must look essentially like figure (a)
below, and a guard at vertex v can see all points. If there are
two reflex angles, then they can be adjacent or nonadjacent
(figures (b) and (c)); in either case, a guard at vertex v can see
all points. [In figure (c), choose the reflex vertex closer to the
bottom side.] Thus for all pentagons, one guard suffices, so
g(5) = 1.

(a)

v

(b)
v

(c)

v

45. The figure suggested in the hint (generalized to have k

prongs for any k ≥ 1) has 3k vertices. The sets of locations
from which the tips of different prongs are visible are dis-
joint. Therefore, a separate guard is needed for each of the
k prongs, so at least k guards are needed. This shows that
g(3k) ≥ k = �3k/3�. If n = 3k + i, where 0 ≤ i ≤ 2, then
g(n) ≥ g(3k) ≥ k = �n/3�.

Supplementary Exercises

1. 2500 3. Yes 5. Yes 7.
∑m

i=1 ni vertices,
∑

t<j ninj

edges 9. a) If x ∈ N(A ∪ B), then x is adjacent to
some vertex v ∈ A ∪ B. WOLOG suppose v ∈ A; then
x ∈ N(A) and therefore also in N(A) ∪ N(B). Conversely,
if x ∈ N(A) ∪ N(B), then WOLOG suppose x ∈ N(A).
Thus x is adjacent to some vertex v ∈ A ⊆ A ∪ B, so
x ∈ N(A ∪ B). b) If x ∈ N(A ∩ B), then x is adjacent to
some vertex v ∈ A∩B. Since both v ∈ A and v ∈ B, it follows
that x ∈ N(A) and x ∈ N(B), whence x ∈ N(A) ∩ N(B).
For the counterexample, let G = ({u, v, w}, {{u, v}, {v, w}}),
A = {u}, and B = {w}. 11. (c, a, p, x, n, m) and many
others 13. (c, d, a, b) and many others 15. 6 times the
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number of triangles divided by the number of paths of length 2
17. a) The probability that two actors each of whom has ap-
peared in a film with a randomly chosen actor have ap-
peared in a film together b) The probability that two of a
randomly chosen person’s Facebook friends are themselves
Facebook friends c) The probability that two of a randomly
chosen person’s coauthors are themselves coauthors d) The
probability that two proteins that each interact with a ran-
domly chosen protein interact with each other e) The prob-
ability that two routers each of which has a communica-
tions link to a randomly chosen router are themselves linked
19. Complete subgraphs containing the following sets of ver-
tices: {b, c, e, f }, {a, b, g}, {a, d, g}, {d, e, g}, {b, e, g}
21. Complete subgraphs containing the following sets of ver-
tices: {b, c, d, j, k}, {a, b, j, k}, {e, f, g, i}, {a, b, i}, {a, i, j},
{b, d, e}, {b, e, i}, {b, i, j}, {g, h, i}, {h, i, j} 23. {c, d} is a
minimum dominating set.
25. a)

b)

27. a) 1 b) 2 c) 3 29. a) A path from u to v in a graph
G induces a path from f (u) to f (v) in an isomorphic
graph H . b) Suppose f is an isomorphism from G to
H . If v0, v1, . . . , vn, v0 is a Hamilton circuit in G, then
f (v0), f (v1), . . . , f (vn), f (v0) must be a Hamilton circuit
in H because it is still a circuit and f (vi ) �= f (vj ) for
0 ≤ i < j ≤ n. c) Suppose f is an isomorphism from
G to H . If v0, v1, . . . , vn, v0 is an Euler circuit in G, then
f (v0), f (v1), . . . , f (vn), f (v0) must be an Euler circuit in
H because it is a circuit that contains each edge exactly once.
d) Two isomorphic graphs must have the same crossing num-
ber because they can be drawn exactly the same way in the
plane. e) Suppose f is an isomorphism from G to H . Then
v is isolated in G if and only if f (v) is isolated in H . Hence,
the graphs must have the same number of isolated vertices.

f) Suppose f is an isomorphism from G to H . If G is bipar-
tite, then the vertex set of G can be partitioned into V1 and V2

with no edge connecting vertices within V1 or vertices within
V2. Then the vertex set of H can be partitioned into f (V1)

and f (V2) with no edge connecting vertices within f (V1) or
vertices within f (V2). 31. 3 33. a) Yes b) No 35. No
37. Yes 39. If e is a cut edge with endpoints u and v, then
if we direct e from u to v, there will be no path in the di-
rected graph from v to u, or else e would not have been a
cut edge. Similar reasoning works if we direct e from v to u.
41. n − 1 43. Let the vertices represent the chickens. We
include the edge (u, v) in the graph if and only if chicken u

dominates chicken v. 45. By the handshaking theorem, the
average vertex degree is 2m/n, which equals the minimum de-
gree; it follows that all the vertex degrees are equal. 47. K3,3

and the skeleton of a triangular prism 49. a) A Hamilton
circuit in the graph exactly corresponds to a seating of the
knights at the Round Table such that adjacent knights are
friends. b) The degree of each vertex in this graph is at least
2n− 1− (n− 1) = n ≥ (2n/2), so by Dirac’s theorem, this
graph has a Hamilton circuit. c) a, b, d, f, g, z 51. a) 4
b) 2 c) 3 d) 4 e) 4 f) 2 53. a) Suppose that G = (V , E).
Let a, b ∈ V . We must show that the distance between a and
b in G is at most 2. If {a, b} �∈ E this distance is 1, so assume
{a, b} ∈ E. Because the diameter of G is greater than 3, there
are vertices u and v such that the distance in G between u

and v is greater than 3. Either u or v, or both, is not in the set
{a, b}. Assume that u is different from both a and b. Either
{a, u} or {b, u} belongs to E; otherwise a, u, b would be a
path in G of length 2. So, without loss of generality, assume
{a, u} ∈ E. Thus v cannot be a or b, and by the same rea-
soning either {a, v} ∈ E or {b, v} ∈ E. In either case, this
gives a path of length less than or equal to 3 from u to v in
G, a contradiction. b) Suppose G = (V , E). Let a, b ∈ V .
We must show that the distance between a and b in G does
not exceed 3. If {a, b} �∈ E, the result follows, so assume that
{a, b} ∈ E. Because the diameter of G is greater than or equal
to 3, there exist vertices u and v such that the distance in G

between u and v is greater than or equal to 3. Either u or v, or
both, is not in the set {a, b}. Assume u is different from both
a and b. Either {a, u} ∈ E or {b, u} ∈ E; otherwise a, u, b

is a path of length 2 in G. So, without loss of generality, as-
sume {a, u} ∈ E. Thus v is different from a and from b. If
{a, v} ∈ E, then u, a, v is a path of length 2 in G, so {a, v} �∈ E

and thus {b, v} ∈ E (or else there would be a path a, v, b of
length 2 in G). Hence, {u, b} �∈ E; otherwise u, b, v is a path
of length 2 in G. Thus, a, v, u, b is a path of length 3 in G,
as desired. 55. a, b, e, z 57. a, c, d, f, g, z 59. If G is
planar, then because e ≤ 3v − 6, G has at most 27 edges.
(If G is not connected it has even fewer edges.) Similarly, G

has at most 27 edges. But the union of G and G is K11, which
has 55 edges, and 55 > 27 + 27. 61. Suppose that G is
colored with k colors and has independence number i. Be-
cause each color class must be an independent set, each color
class has no more than i elements. Thus there are at most ki
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vertices. 63. a) C(n, m)pm(1 − p)n−m b) np c) To gen-
erate a labeled graph G, as we apply the process to pairs of
vertices, the random number x chosen must be less than or
equal to 1/2 when G has an edge between that pair of vertices
and greater than 1/2 when G has no edge there. Hence, the
probability of making the correct choice is 1/2 for each edge
and 1/2C(n,2) overall. Hence, all labeled graphs are equally
likely. 65. Suppose P is monotone increasing. If the prop-
erty of not having P were not retained whenever edges are
removed from a simple graph, there would be a simple graph
G not having P and another simple graph G′ with the same
vertices but with some of the edges of G missing that has P .
But P is monotone increasing, so because G′ has P , so does
G obtained by adding edges to G′. This is a contradiction. The
proof of the converse is similar.

CHAPTER 11

Section 11.1

1. (a), (c), (e) 3. a) a b) a, b, c, d, f , h, j , q, t c) e, g, i, k,
l, m, n, o, p, r , s, u d) q, r e) c f) p g) f , b, a h) e, f , l, m, n
5. No 7. Level 0: a; level 1: b, c, d; level 2: e through k (in
alphabetical order); level 3: l through r; level 4: s, t ; level 5:
u 9. a) The entire tree b) c, g, h, o, p and the four edges
cg, ch, ho, hp c) e alone 11. a) 1 b) 2 13. a) 3 b) 9
15. a) The “only if” part is Theorem 2 and the definition of a
tree. Suppose G is a connected simple graph with n vertices
and n − 1 edges. If G is not a tree, it contains, by Exercise
14, an edge whose removal produces a graph G′, which is still
connected. If G′ is not a tree, remove an edge to produce a
connected graph G′′. Repeat this procedure until the result is
a tree. This requires at most n−1 steps because there are only
n − 1 edges. By Theorem 2, the resulting graph has n − 1
edges because it has n vertices. It follows that no edges were
deleted, so G was already a tree. b) Suppose that G is a tree.
By part (a), G has n−1 edges, and by definition, G has no sim-
ple circuits. Conversely, suppose that G has no simple circuits
and has n − 1 edges. Let c equal the number of components
of G, each of which is necessarily a tree, say with ni vertices,
where

∑c
i=1 ni = n. By part (a), the total number of edges in

G is
∑c

i=1(ni−1) = n−c. Since we are given that this equals
n − 1, it follows that c = 1, i.e., G is connected and there-
fore satisfies the definition of a tree. 17. 9999 19. 2000
21. 999 23. 1,000,000 dollars 25. No such tree exists by
Theorem 4 because it is impossible for m = 2 or m = 84.

27. Complete binary tree of height 4:

Complete 3-ary tree of height 3:

29. a) By Theorem 3 it follows that n = mi + 1. Because
i+l = n, we have l = n−i, so l = (mi+1)−i = (m−1)i+1.
b) We have n = mi + 1 and i + l = n. Hence, i = n − l.
It follows that n = m(n − l) + 1. Solving for n gives
n = (ml − 1)/(m − 1). From i = n − l we obtain
i = [(ml − 1)/(m− 1)] − l = (l − 1)/(m− 1). 31. n− t

33. a) 1 b) 3 c) 5 35. a) The parent directory b) A subdi-
rectory or contained file c) A subdirectory or contained file in
the same parent directory d) All directories in the path name
e) All subdirectories and files continued in the directory or
a subdirectory of this directory, and so on f) The length of
the path to this directory or file g) The depth of the system,
i.e., the length of the longest path 37. Let n = 2k , where
k is a positive integer. If k = 1, there is nothing to prove
because we can add two numbers with n − 1 = 1 processor
in log 2 = 1 step. Assume we can add n = 2k numbers in
log n steps using a tree-connected network of n − 1 proces-
sors. Let x1, x2, . . . , x2n be 2n = 2k+1 numbers that we
wish to add. The tree-connected network of 2n−1 processors
consists of the tree-connected network of n − 1 processors
together with two new processors as children of each leaf. In
one step we can use the leaves of the larger network to find
x1 + x2, x3 + x4, . . . , x2n−1 + x2n, giving us n numbers,
which, by the inductive hypothesis, we can add in log n steps
using the rest of the network. Because we have used log n+ 1
steps and log(2n) = log 2+ log n = 1+ log n, this completes
the proof. 39. c only 41. c and h 43. Suppose a tree T

has at least two centers. Let u and v be distinct centers, both
with eccentricity e, with u and v not adjacent. Because T is
connected, there is a simple path P from u to v. Let c be any
other vertex on this path. Because the eccentricity of c is at
least e, there is a vertex w such that the unique simple path
from c to w has length at least e. Clearly, this path cannot
contain both u and v or else there would be a simple circuit.
In fact, this path from c to w leaves P and does not return
to P once it, possibly, follows part of P toward either u or v.
Without loss of generality, assume this path does not follow
P toward u. Then the path from u to c to w is simple and of
length more than e, a contradiction. Hence, u and v are adja-
cent. Now because any two centers are adjacent, if there were
more than two centers, T would contain K3, a simple circuit,
as a subgraph, which is a contradiction.
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45. T1 T2 T3 T4

T5 T6

T7

47. The statement is that every tree with n vertices has a path
of length n− 1, and it was shown only that there exists a tree
with n vertices having a path of length n− 1.

Section 11.2

1. banana

apple

coconut

peach

pear

mango

papaya

3. a) 3 b) 1 c) 4 d) 5

5. the

quick

brown

fox

dog
jumps

over

lazy

7. At least �log3 4� = 2 weighings are needed, because there
are only four outcomes (because it is not required to determine
whether the coin is lighter or heavier). In fact, two weighings
suffice. Begin by weighing coin 1 against coin 2. If they bal-
ance, weigh coin 1 against coin 3. If coin 1 and coin 3 are the
same weight, coin 4 is the counterfeit coin, and if they are not
the same weight, then coin 3 is the counterfeit coin. If coin 1
and coin 2 are not the same weight, again weigh coin 1 against
coin 3. If they balance, coin 2 is the counterfeit coin; if they
do not balance, coin 1 is the counterfeit coin. 9. At least

�log3 13� = 3 weighings are needed. In fact, three weighings
suffice. Start by putting coins 1, 2, and 3 on the left-hand side
of the balance and coins 4, 5, and 6 on the right-hand side.
If equal, apply Example 3 to coins 1, 2, 7, 8, 9, 10, 11, and
12. If unequal, apply Example 3 to 1, 2, 3, 4, 5, 6, 7, and 8.
11. The least number is five. Call the elements a, b, c, and d.
First compare a and b; then compare c and d. Without loss of
generality, assume that a < b and c < d. Next compare a

and c. Whichever is smaller is the smallest element of the set.
Again without loss of generality, suppose a < c. Finally, com-
pare b with both c and d to completely determine the ordering.
13. The first two steps are shown in the text. After 22 has been
identified as the second largest element, we replace the leaf
22 by −∞ in the tree and recalculate the winner in the path
from the leaf where 22 used to be up to the root. Next, we see
that 17 is the third largest element, so we repeat the process:
replace the leaf 17 by −∞ and recalculate. Next, we see that
14 is the fourth largest element, so we repeat the process: re-
place the leaf 14 by−∞ and recalculate. Next, we see that 11
is the fifth largest element, so we repeat the process: replace
the leaf 11 by −∞ and recalculate. The process continues in
this manner. We determine that 9 is the sixth largest element,
8 is the seventh largest element, and 3 is the eighth largest
element. The trees produced in all steps, except the second to
last, are shown here.

–�–�

17

17 11

17 1198

17 1198 314

–�–�–�

14

14 11

14 1198

1198 314

–�–�

11

8 11

1198

1198 3–� –�

–�
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–�–�

9

8 9

98

98 3–� –�

–�

–�

–�

–�–�

3

3

–� –�

–�

–�

–�–�–�

–�–� 3

3

15. The value of a vertex is the list element currently there,
and the label is the name (i.e., location) of the leaf responsible
for that value.

procedure tournament sort(a1, . . . , an)

k := �log n�
build a binary tree of height k

for i := 1 to n

set the value of the ith leaf to be ai and its label to
be itself

for i := n+ 1 to 2k

set the value of the ith leaf to be −∞ and its label to
be itself

for i := k − 1 downto 0
for each vertex v at level i

set the value of v to the larger of the values of its
children and its label to be the label of the child
with the larger value

for i := 1 to n

ci := value at the root
let v be the label of the root
set the value of v to be −∞

while the label at the root is still v
v := parent(v)
set the value of v to the larger of the values of its

children and its label to be the label of the child
with the larger value

{c1, . . . , cn is the list in nonincreasing order}
17. k − 1, where n = 2k 19. a) Yes b) No c) Yes d) Yes
21. a: 000, e: 001, i: 01, k: 1100, o: 1101, p: 11110, u: 11111
23. a: 11; b: 101; c: 100; d: 01; e: 00; 2.25 bits (Note: This
coding depends on how ties are broken, but the average num-
ber of bits is always the same.) 25. There are four possible
answers in all, the one shown here and three more obtained
from this one by swapping t and v and/or swapping u and w.

0

0 1

0 1

t v

u

w

1

27. A:0001; B:101001; C:11001; D:00000; E:100;
F:001100; G:001101; H:0101; I:0100; J:110100101;
K:1101000; L:00001; M:10101; N:0110; O:0010; P:101000;
Q:1101001000; R:1011; S:0111; T:111; U:00111; V:110101;
W:11000; X:11010011; Y:11011; Z:1101001001 29. A:2;
E:1; N:010; R:011; T:02; Z:00 31. n 33. Because the tree
is rather large, we have indicated in some places to “see text.”
Refer to Figure 9; the subtree rooted at these square or circle
vertices is exactly the same as the corresponding subtree in
Figure 9. First player wins.

32

+1

–1

–1

–1

–1

+1

–1 –1 +1

+1

–1 –1see
text
+1

see
text
–1

see
text
+1

see
text
+1

21 11 131

1

1 2

31 322122

21 1

max

max

min

min

35. a) $1 b) $3 c) −$3 37. See the figures shown next.
a) 0 b) 0 c) 1 d) This position cannot have occurred in a
game; this picture is impossible.

a)

X
X X

XX
X

XX

XX

X
X

XX
X

X

XX

X
X

XX

O
O

O
OO

O
O

O

O
O

O
OO

O
O

O

O
O

O

00

draw

0

draw

0

0

b)

0+1

draw

0

X wins

+1

0

X
X

X
X

X
X

X

X
X
X

O
OO

O
O

OO

O

X
X

X
X

X
X

X
X

O
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O
O
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O

X
X
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